

LED Katalog 2022

06/2022 Edition 1

www.monos.de

Es ist Licht und ebenso Information -Inhalt, Form und Struktur. Es bildet sich das Potential für alles.

David Bohm

monos ist ein Spezialist für die Herstellung von technischen Sonderleuchten und Objektleuchten für nahezu alle Anwendungen im Innenbereich. Eine unserer besonderen Stärken ist die Fertigung von Sonderleuchten auch in kleinen und mittleren Auflagen. Unsere Erfahrung in den Bereichen Licht, Leuchten und Elektrotechnik reicht zurück bis in das Jahr 1930.

monos Leuchten sind lichttechnisch vermessen und entsprechen den hohen europäischen Sicherheitsstandards. Unsere in Europa hergestellten Leuchten werden jährlich in ca. 1000 Objekten eingesetzt.

Die Planungs- und Angebotsabteilung von **monos** erstellt für Sie rechtssichere Planungen gemäß DIN EN 12464-1. Natürlich unterstützen wir Sie auch durch die Stellung von Musterleuchten.

LED Referenzen

Jährlich liefern wir Leuchten für ca. 1000 Objekte. Hier einige Beispiele:

Verkaufsflächen

Raab Karcher Lohr
Raab Karcher Zwickau
TUI Reisecenter Burscheid
First Reisebüro Hückeswagen
First Reisebüro Kelkheim
TUI Reisecenter Ingolstadt
First Reisebüro Bottrop
TUI Reisecenter Hofheim
Street shoes Celle
Ferrari München
Handyland Nidda

Öffentliche Bauvorhaben

Historisches Museum Frankfurt Weilbachhalle Flörsheim Zoo Wuppertal Polizei Rodgau Kongresshalle Giessen Gemeindezentrum Kita - Prisdorf

Andere

I.B.CPE Reiskirchen Hotel Kempinski Ffm Fischer Feinmechanik Sindelfingen Heidenheimer Zeitung - Heidenheim Steuerbüro Persis Heidenheim

Schulen und Kindergärten

Liederbachschule Liederbach
Heinrich Böll Schule Hattersheim
Tielemann Schule Limburg
Dreilinden Schule Bad Soden
Chemiehörsaal Universität Marburg
Biologiehörsaal Universität Marburg
Hochschule Fulda - Mensa
KITA Frankfurt-Rödelheim
KITA Wolfgang - Hanau
Schulzentrum Scharnebeck
Max-Tau-Schule Kiel
Sporthalle Enzweihingen
Sporthalle Kleinklettbach
Schulzentrum Elchingen

Krankenhäuser

Stiftungsklinikum Mittelrhein Koblenz Marienhaus Klinikum Neuwied Dermatologisches Forschungszentrum Wuppertal Klinikum Offenbach Kreisklinik Seeheim/Jugenheim Pflegeheim St.Ulrich Hünfeld ASB Tagespflege Karben Frauenklinik Greifswald Klinikum Oldenburg Altenzentrum Oberndorf

Vertriebsbüros

monos GmbH & CO. KG 56077 Koblenz, In den Sieben Morgen 10 +49 261 96252-0 info@monos.de PLZ-Gebiete: 34, 36290 - 36399, 52 - 53, 57

Vertriebsbüro Sachsen / Thüringen PLZ-Gebiete: 01-09, 98, 99

Vertriebsbüro Berlin / Brandenburg PLZ-Gebiete: 10 - 16

Vertriebsbüro Hamburg/ Schleswig- Holstein PLZ-Gebiete: 20 - 25 Vertriebsbüro Nord- Ost

Jürgen Malinowski LED@malino.eu

PLZ-Gebiete: 26 – 32, 37 – 39, 49

Clarus Leuchten

Mecklenburg-Vorpommern

Vertriebsbüro

Thomas Naguschewski tn@clarus-leuchten.de PLZ-Gebiete: 17-19

Vertriebsbüro Nordrhein-Westfalen

Claudius Grötzschel cl.groetzschel@online.de

PLZ-Gebiete: 33, 40 - 48, 50, 51, 58, 59

Vertriebsbüro Frankfurt / Hessen

Peter Spörl peter.spoerl@monos.de

PLZ-Gebiete: 35, 36 - 36289, 36400 - 36469, 55, 60 - 65, 67-69

Vertriebsbüro Saar/ Rhein/ Luxemburg

Joachim Gauer joachim.gauer@monos.de PLZ-Gebiete: 54 - 56, 66 - 68

Vertriebsbüro Baden

Karl-Heinz Schmidt espro@es-pro.info

Christopher Schmidt espro@es-pro.info PLZ-Gebiete: 76 - 79

Vertriebsbüro Württemberg

Reinhold Irlbeck info@acende.de

PLZ-Gebiete: 70 - 75, 88, 891, 895 - 899

Vertriebsbüro Bayern Süd

PLZ-Gebiete: 80 - 87, 892 - 894

Vertriebsbüro Nord-Bayern

Gottfried Hecht gottfried.hecht@t-online.de

PLZ-Gebiete: 90 - 97

Vergleich Lichtstrom herkömmliche Leuchtmittel mit LED

Leuchtst	offlampen	LED	Leuchtsto	fflampen	LED
Т5	Lichtstrom	Lichtstrom	Т8	Lichtstrom	Lichtstrom
1x14W	1350	945	1x18W	1150	805
1x21W	2100	1470	1x30W	1920	1344
1x24W	2000	1400	1x36W	2700	1890
1x28W	2900	2030	1x58W	5200	3640
1x35W	3650	2555	2x18W	2300	1610
1x39W	3500	2450	2x30W	3830	2681
1x49W	4900	3430	2x36W	5400	3780
1x54W	5000	3500	2x58W	10400	7280
1x80W	7000	4900	3x18W	3450	2415
2x14W	2700	1890	3x30W	5760	4032
2x21W	4200	2940	3x36W	8100	5670
2x24W	4000	2800	3x58W	15600	10920
2x28W	5900	4130	4x18W	4600	3220
2x35W	7300	5110	4x30W	7680	5376
2x39W	7000	4900	4x36W	10800	7560
2x49W	9800	6860	4x58W	20800	14560
2x54W	10000	7000	7,00,00	20000	14000
2x80W	14000	9800			
3x14W	4050	2835			
3x21W	6300	4410			
3x24W	6000	4200			
3x28W	8700	6090			
3x35W	10950	7665			
3x39W	10500	7350			
3x49W	14700	10290			
3x54W	15000	10500			
3x80W	21000	14700			
4x14W	5400	3780			
4x21W	8400	5880			
4x24W	8000	5600	Halogen-Hoch	drucklampen	LED
4x28W	11600	8120	Halogen	Lichtstrom	Lichtstrom
4x35W	14600	10220	35W	3500	2450
4x39W	14000	9800	70W	6800	4760
4x49W	19600	13720	150W	12500	8750
4x54W	20000	14000	250W	17000	11900
4x80W	28000	19600	400W	31000	21700
		.5500	40011	01000	21100
Kompakt-Leuc	chtstofflampen	LED	Kompakt-Leuc	htstofflampen	LED
TC-L	Lichtstrom	Lichtstrom	TC-DE/TE	Lichtstrom	Lichtstrom
1x24W	1800	1260	1x13W	900	540
1x36W	2900	2030	1x18W	1200	720
1x40W	3500	2450	1x26W	1800	1080
1x55W	4800	3360	1x32W	2400	1440
2x24W	3600	2520	1x42W	3200	1920
2x36W	5800	4060	2x13W	1800	1080
2x40W	7000	4900	2x18W	2400	1440
2x55W	9600	6720	2x26W	3600	2160
3x24W	5400	3780	2x32W	4800	2880
3x36W	8700	6090	2x42W	6400	3840
3x40W	10500	7350			
3x55W	14400	10080			
4x24W	7200	5040	Lichtstrom: Einh	eit Im	
4x24vv 4x36W	11600	8120		· - · - · · · ·	
4x40W	14000	9800			
4x55W	19200	13440			
	.0200				

Die hier angegebenen Werte sind Richtwerte zum Vergleich von Leuchten mit herkömmlicher Bestückung und Leuchten mit LED Bestückung. Die Lichtströme der herkömmlichen Leuchtmittel basieren auf dem Fabrikat Osram und berücksichtigen nicht den Betriebswirkungsgrad einzelner Leuchten. Die notwendigen LED-Lichtströme sind Ca.-Werte und berücksichtigen ebenfalls nicht den Betriebswirkungsgrad einzelner Leuchten. In der Regel ist der Betriebswirkungsgrad von LED Leuchten höher als der von Leuchten mit konventioneller Bestückung. Je nach Betriebswirkungsgrad der Leuchte können vergleichbare Ergebnisse mit höheren aber auch mit niedrigeren LED Lichtströmen erreicht werden.

Garantiebedingungen für LED Leuchten

- 1) Diese Bedingungen gelten für alle LED Produkte die unter der Marke « MONOS » in Verkehr gebracht werden. Die Garantie bezieht sich auf alle LED-Module und LED Betriebsgeräte.
- 2) Voraussetzung für die Gewährung von Garantieleistungen sind eine fachgerechte Montage, die bestimmungsgemäße Verwendung der Produkte und nach DIN definierte Umgebungsbedingungen sowie regelmäßige Wartung.
- 3) Monos gewährt für LED-Leuchten eine Garantie von 5 Jahren ab Lieferdatum. Die Garantie gilt für alle o.a. LED-Produkte die ab dem 01.01.2018 zur Auslieferung gebracht wurden.
- 4) Die Garantie gilt für (dauerhafte) Fehlfunktionen von Produkten, die auf wesentliche Fabrikations- und/ oder Materialfehler zurückzuführen sind und bezieht sich ausschließlich auf die Mortalität oberhalb von 0,2% je 1000 Betriebsstunden. Ein Lichtstromrückgang von bis zu 0,65% je 1000 Betriebsstunden ist ebenfalls normal und ist deshalb kein Grund für die Inanspruchnahme der Garantie. Bei Nachlieferungen von LED-Modulen kann es auf Grund technischen Fortschritts oder nutzungsbedingten Veränderungen von Lichtstrom oder Lichtfarbe zu Abweichungen in Licht- und Designeigenschaften gegenüber dem ursprünglich gelieferten Produkt kommen. Die an Monos zurückgegebenen Komponenten oder Produkte wechseln im Garantiefall in das Eigentum von Monos.
- 5) Diese Herstellergarantie ist eine Ersatz- oder Ersatzteilgarantie. Sämtliche Ersatzprodukte oder Ersatzteile können neue oder wiederverwertete Materialien enthalten. Auf die Ersatzprodukte- oder Teile wird für die restliche Zeit des Garantiezeitraums eine Garantie nach diesen Bedingungen übernommen. Die Erbringung einer Garantieleistung bewirkt also keine Verlängerung des Garantiezeitraums. Bei Ausfällen, welche die Nennausfallrate überschreiten, behält sich Monos vor, die defekten Komponenten an einem unserer Standorte zu reparieren, Ersatzprodukte oder Komponenten zu liefern oder dem Kunden defekte Komponenten gutzuschreiben.
- 6) Nicht in die Garantie eingeschlossen sind : Betriebsausfallschäden, entgangener Gewinn oder andere mittelbare Folgeschäden, vergebliche Aufwendungen oder Nebenkosten wie Ein- und Ausbaukosten, Entsorgungskosten, Transportkosten, Kosten für Fahrt- und Wegezeit sowie Kosten für Hebevorrichtungen oder Gerüste. Ebenfalls nicht eingeschlossen sind Produkte andere Hersteller die Monos Leuchten als Handelsware und/ oder unter fremdem Namen in Verkehr bringt.
- 7) Die Garantie erlischt, wenn ohne unsere schriftliche Erlaubnis Änderungen oder Instandsetzungen vorgenommen werden.
- 8) Der Garantieanspruch kann innerhalb der Garantiezeit gegen Vorlage der von Monos ausgestellten Handelsrechnung für die oben beschriebenen Produkte, welche in einem Land der Europäischen Union installiert sind, geltend gemacht werden. Die gesetzlichen Gewährleistungsrechte gelten unabhängig von der Garantie. Dies gilt auch für Ansprüche gegenüber dem Installateur oder Fachhändler.
- 9) Für das Rechtsverhältnis im Zusammenhang mit dieser Garantie gilt ausschließlich deutsches Recht. Das UN-Kaufrecht ist ausgeschlossen. Gerichtsstand ist 56077 Koblenz.
- 10) Die Garantiebedingungen beziehen sich ausschließlich auf die Mortalität über der Nennausfallsrate. Aufgrund des technischen Fortschritts sowie der nutzungsbedingten Veränderung des Lichtstroms von Produkten kann es bei Nachlieferungen von LED-Modulen zu Abweichungen in den Lichteigenschaften gegenüber den Ursprungsprodukten kommen.

Bedingt durch technische Weiterentwicklungen der einzelnen Leuchtenkomponenten, behalten wir uns vor, die Leuchten in Konstruktion und Ausstattung zu verändern.

monos GmbH & Co. KG In den Sieben Morgen 10 56077 Koblenz Koblenz, 05. 2018

Gültigkeit

Durch Herausgabe dieses Kataloges verlieren sämtliche frühere Kataloge ihre Gültigkeit. Sämtliche Abbildungen, Beschreibungen und Maße sind so naturgetreu wie möglich wiedergegeben, aber unverbindlich. Farbliche Abweichungen und Druckfehler vorbehalten. Abbildungen ähnlich. Eine Haftung diesbezüglich schließen wir aus. Spätere technische oder optische Änderungen und Verbesserungen, sind ausdrücklich vorbehalten und können ohne vorherige Anzeige durchgeführt werden.

Chemische Beständigkeit von Leuchtenkörpern

Max. Koncentration	Polyk	arbon	at/PC	(SA	Cryl/A N, PM	MA)		ABS				ium/Al 230) Polystyrol			
	Bes	tändig	keit	Bes	tändig	keit	Bes	tändig	keit	Bes	tändig	keit	Bes	tändig	keit
	ē	teilweise	nein	.5	teilweise	nein	.0,	teilweise	nein	.5.	teilweise	nein	, ex	teilweise	nein
			•			•			•	•					•
		٠				•			•		•				
5%			•				•				•			•	
			•			•			•		•				
			•		•				•	•					•
				•											
50%	•				•			•			•			•	
			•			•			•		•				
	•				•		•				•		•		
			•			•			•	•					•
		٠		•						•					
					•				•	•			•		
25%				•				•			•			•	
60%			•	•								•			
15%	•			•							•		•		
				•								•			
			•			•			•		•				•
												•			
	•			•								•	•		
20%													•		
					•			•				•		•	
			•						•			•			
	•			•			•			•					
						•			•						
40%		•			•			•			•			•	
			•		•							•			
10%	•			•				•			•		•		
												•			
			•			•			•						
					•										
		•		•			•			•				•	
		•													
		•		•				•		•			•		
										•			•		
30%						•				•		1			•
1917197			•			•			•	•					•
									•		•			•	
			•			•			•		•				•
20%											•		•		
								•		•					
			•			•			•	•					
	5% 50% 50% 50% 25% 60% 15% 50% 50% 50% 50% 50% 35% 40% 30% 10% 30%	## Solution Polyty	Some Some	Solution Polykarbonat/PC Beständigkeit	Beständigkeit	Beständigkeit	Solution Polykarbonat/PC SAN, PMMA Beständigkeit Beständigkeit Beständigkeit Solution Solutio	Beständigkeit	Beständigkeit	Beständigkeit	Beständigkeit Beständigkei	Beständigkeit	Beständigkeit	Deständigkeit Deständigkei	Beständigkeit

Inhaltsverzeichnis 1

circo

22-5-02.013

acis 22-5-02.014

22-5- 02.016

aurora duo

22-5- 02.006

aurora e-line

22-5- 02.008

22-5- 02.018

aurora line

easy click 22-5- 02.022

aurora line r

rotun 22-5-02.024

aurora line s

22-5-02.012

exibat single 22-5- 02.026

aurora

exibat duo 22-5- 02.028

pendula 22-5-02.030

linear flex RGB 22-5-02.032

linear flex IP68 22-5-02.034

linear flex RGB 22-5-02.036

aurora easy

Aluprofile 22-5-02.038

3. Reinraumleuchten easy Clean

easy Clean Opal 22-5- 03.001

easy Clean Mikro 22-5- 03.003

easy Clean Laser 22-5- 03.005

easy Clean Metall Opal 22-5- 03.007

easy Clean Metall Mikro 22-5-03.008

easy Clean Metall Laser 22-5-03.009

ben eip IP65 Opal 22-5-03.011

ben eip Metall Mikro 22-5-03.016

Opal 22-5-03.021

Mikro 22-5-03.023

Laser 22-5-03.025

easy Clean Aufbau easy Clean Aufbau easy Clean Aufbau Ausstattungsvarianten für Reinraumleuchten 22-5- 03.027/28

4. Steh- und Tischaufsatzleuchten luna

luna bella 22-5-04.001

luna solum 22-5-04.003

luna geminus U 22-5-04.010

Iuna geminus T 22-5-04.013

luna bio 22-5-04.016

luna mensa 22-5-04.006

Inhaltsverzeichnis 2

5. Einbauleuchten

22-5-05.039

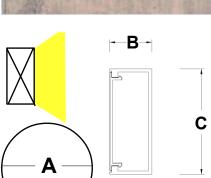
6. Pendel - und Anbauleuchten

22-5-05.037

22-5-05.035

7. Industrie - und Antivandalenleuchten

Akustikleuchten silentium und architektonische Leuchten



ringo trio - Pendelleuchte mit 3 filigranen Ringen

monos LED Pendelleuchte ringo trio, Gehäuse aus Aluminium, pulverbeschichtet wahlweise in Farbe Weiß, Silbergrau oder Schwarz, Leuchtenform bestehend aus 3 Lichtringen 1 x D: 798mm / 1 x D: 1005mm / 1 x D: 1179mm, Lichtverteilung direkt zum Kreisinneren, Lichtaustritt abgedeckt durch opal/satine Abdeckung, IP20, inklusive Pendelsatz 3 x 3 L: 4000mm mit transparenter Zuleitung zusammengeführt im Deckenbaldachin D: 250mm x H: 50mm, der Montagewinkel der einzelnen Ringe kann am jeweiligen Ring eingestellt werden, Treiber im Deckenbaldachin, Profilmaße H: 50mm x B: 20mm.

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF>	Optik	UGR	Α	В	С	Kg	IP
005.0001.1312	DALI	236	19556	4000	80	0,90	Opal	< 23	798/1005/1179	20	50	12,0	20

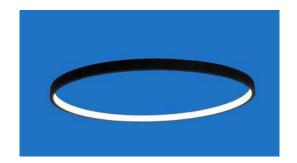
Option - Optik Edelrost

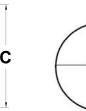
www.monos.de/D24.072REV00

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein


Datenblatt: www.monos.de/23.019DREV00


ringo - filigrane Pendelleuchte

monos LED Pendelleuchte ringo, CRI>80, L80/B10 bei 50.000h - 25°C, Gehäuse aus Aluminium, pulverbeschichtet wahlweise in Farbe Weiss, Silbergrau oder Schwarz, Leuchtenform ausgebildet als filigraner Ring, Lichtverteilung direkt, gerichtet zum Kreisinneren, Lichtaustritt abgedeckt durch opal/satine Abdeckung, IP20, inklusive Pendelsatz L: 1500mm mit transparenter Zuleitung zusammengeführt im Deckenbaldachin, Treiber im Deckenbaldachin, zur abgehängten Montage. Profilmaße H: 50mm x B: 20mm.

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF>	Optik	UGR	Α	В	С	Kg	IP
005.0001.1686	DALI	34	2824	4000	80	0,90	Opal	< 23	432	20	50	3,3	40
005.0001.1687	DALI	48	3974	4000	80	0,90	Opal	< 23	607	20	50	3,6	40
005.0001.1688	DALI	63	5229	4000	80	0,90	Opal	< 23	798	20	50	4,0	40
005.0001.1689	DALI	79	6589	4000	80	0,90	Opal	< 23	1005	20	50	4,4	40
005.0001.1690	DALI	93	7739	4000	80	0,90	Opal	< 23	1179	20	50	4,7	40
005.0001.1691	DALI	119	9848	4000	80	0,90	Opal	< 23	1500	20	50	5,3	40
005.0001.1692	DALI	156	12968	4000	80	0,90	Opal	< 23	1974	20	50	6,2	40

Option - Optik Edelrost

www.monos.de/D24.072REV00

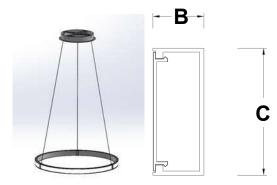
Ausstattungsvarianten:

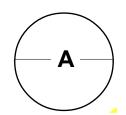
Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein

Datenblatt: www.monos.de/23.018DREV00







ringo X - filigrane Pendelleuchte

monos LED Pendelleuchte ringo X, CRI>80, L80/B10 bei 50.000h - 25°C, Gehäuse aus Aluminium, pulverbeschichtet wahlweise in Farbe Weiss, Silbergrau oder Schwarz, Leuchtenform ausgebildet als filigraner Ring, Lichtverteilung direkt, Lichtaustritt gerichtet zum Kreisäußeren, Lichtaustritt abgedeckt durch opal/satine Abdeckung, IP20, inklusive Pendelsatz L: 1500mm mit transparenter Zuleitung zusammengeführt im Deckenbaldachin, Treiber im Deckenbaldachin (D: 350mm), zur abgehängten Montage. Profilmaße H: 50mm x B:20mm.

D: 432mm - D: 1179mm = 3 Seile

D: 1500mm = 4 Seile D: 1974mm = 5 Seile

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Farbe	Α	В	С	Kg	ΙP
005.0001.3447	DALI	34	2824	4000	80	Opal	23	Silbergrau	432	20	50	3,3	20
005.0001.3448	DALI	48	3974	4000	80	Opal	23	Silbergrau	607	20	50	3,6	20
005.0001.3449	DALI	63	5229	4000	80	Opal	23	Silbergrau	798	20	50	4,0	20
005.0001.3450	DALI	79	6589	4000	80	Opal	23	Silbergrau	1005	20	50	4,4	20
005.0001.3451	DALI	93	7739	4000	80	Opal	23	Silbergrau	1179	20	50	4,7	20
005.0001.3452	DALI	119	9848	4000	80	Opal	23	Silbergrau	1500	20	50	5,3	20
005.0001.3453	DALI	156	12968	4000	80	Opal	23	Silbergrau	1974	20	50	6,2	20

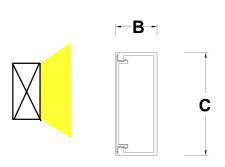
Option - Optik Edelrost

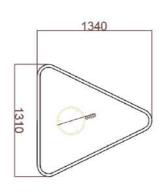
www.monos.de/D24.072REV00

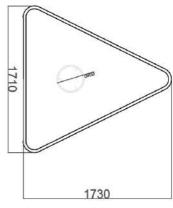
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein

Datenblatt: <u>www.monos.de/D24.057REV01</u>






ringo trias - LED Pendelleuchte in 3-Eckform

monos LED Pendelleuchte ringo trias, CRI80, L80 bei 50.000h - 25°C, Gehäuse aus Aluminium, pulverbeschichtet in Farbe Weiss, Schwarz oder Silbergrau, (andere RAL Farben auf Anfrage), Leuchtenform ausgebildet als 3-Eck mit abgerundeten Ecken, Lichtverteilung direkt nach innen, Lichtaustritt abgedeckt durch opal/satine Abdeckung, IP20, inklusive Pendelsatz L: 1500mm mit transparenter Zuleitung zusammengeführt im Deckenbaldachin D: 350mm pulverbeschichtet in Leuchtenfarbe, Treiber im Deckenbaldachin, zur abgehängten Montage. Profilmaße H: 50mm x B: 20mm.

005.0001.1209 005.0001.1211

005.0001.1210 005.0001.1212

Artikelnummer	Treiber	W	LM	CCT CRI	> Optik	Α	В	С
005.0001.1211	DALI	87	9070	4000 >80	Opal	1340 x 1310	20	50
005.0001.1212	DALI	125	13104	4000 >80	Opal	1730 x 1720	20	50

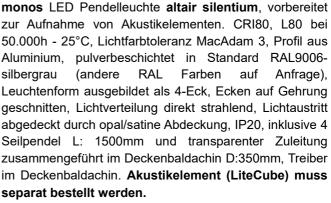
Option - Optik Edelrost

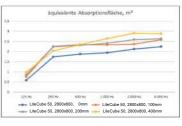
www.monos.de/D24.072REV00

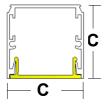
Datenblatt

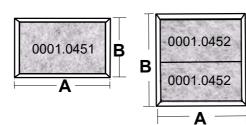
Ausstattungsvarianten:

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein
Datenblatt: www.mon	os.de/D24.062REV00




altair silentium - Pendelleuchte





Тур	125 Hz	250 Hz	500 Hz	1.000 Hz	2.000 Hz	4,000 Hz
LiteCube, 0mm	0,58	1,74	1,87	1,94	2,12	2,24
LiteCube,	0,75	2,25	2,34	2,33	2,36	2,58
LiteCube, 200mm	0,85	2,23	2,31	2,41	2,59	2,63
LiteCube,	0,98	2,03	2,34	2,64	2,90	2,88

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	UGR<	Α	В	С	Farbe
005.0001.1700	DALI	98	9619	4000	80	0,9	Opal	23	1730	1030	32	Silbergrau
005.0001.1701	DALI	123	12112	4000	80	0,9	Opal	23	1730	1730	32	Silbergrau
005.0001.2062	DALI	44	4274	4000	80	0,9	Opal	23	630	630	32	Silbergrau
005.0001.2063	DALI	58	5699	4000	80	0,9	Opal	23	1030	630	32	Silbergrau

Akustikelemente

Artikelnummer	Bezeichnung	Α	В	С	
0001.0585	Akustikelement LiteCube für altair 630 x 630	563	563	24	
0001.0452	Akustikelement LiteCube für altair 1730 x 1730	2 x 1663	830	24	
Artikelnummer	Bezeichnung	Α	В	С	
Artikelnummer 0001.0584	Bezeichnung Akustikelement LiteCube für altair 1030 x 630	A 963	B 563		

Akustisch wirksamer Deckenabsorber zum Einbau in Pendelleuchte altair, bestehend aus thermisch verdichteten Polyesterfasern, vermessener Schallabsorber Klasse B, zur Erhöhung der Absorptionseigenschaften der Decke und Reduzierung der Nachhallzeit im Raum. Oberfläche mit Stoffbespannung gemäß nachfolgender Farbmusterkarte. "Die Farbe muss gemäß nachfolgender Farbmusterkarte bei der Bestellung angegeben werden"

Datenblatt

Ausstattungsvarianten:

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein

Datenblatt: www.monos.de/23.026DREV00

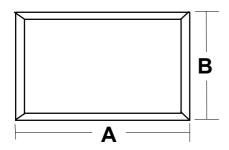
altair silentium - Pendelleuchte

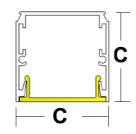
Farbmusterkarte Camira für silentium Akustikelemente

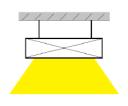
Abbildungen können abweichen

(ähnlich RAL9016)

(ähnlich RAL9005)


(ähnlich RAL9006)




altair - Pendelleuchte

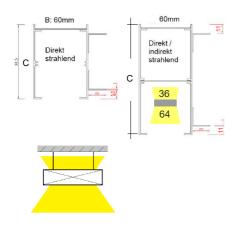
monos Pendelleuchte altair, CRI80, L80 bei 50.000h - 25°C, Lichtfarbtoleranz MacAdam 3, Profil aus Aluminium, pulverbeschichtet in Standard RAL9006-silbergrau (andere RAL Farben auf Anfrage), Leuchtenform ausgebildet als 4-Eck, Ecken auf Gehrung geschnitten, Lichtverteilung direkt strahlend, Lichtaustritt abgedeckt durch opal/satine Abdeckung, IP20, inklusive 4 Seilpendel L: 1500mm und transparenter Zuleitung zusammengeführt im Deckenbaldachin D:350mm, Treiber im Deckenbaldachin.

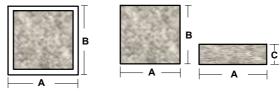
Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	UGR<	Α	В	С	Farbe
005.0001.2054	DALI	44	4274	4000	80	0,9	Opal	23	630	630	32	Silbergrau
005.0001.1697	DALI	123	12112	4000	80	0,9	Opal	23	1730	1730	32	Silbergrau
005.0001.2055	DALI	58	5699	4000	80	0,9	Opal	23	1030	630	32	Silbergrau
005.0001.1696	DALI	98	9619	4000	80	0,9	Opal	23	1730	1030	32	Silbergrau

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/23.025DREV00




reca silentium - Pendelleuchte

monos LED Pendelleuchte reca silentium, vorbereitet zur Aufnahme von Akustikelementen, CRI80, L80 bei 50.000h - 25°C, Profil aus Aluminium, pulverbeschichtet in RAL Farbe nach Wahl, Leuchtenform ausgebildet als Quadrat mit freiem Innenfeld, Ecken auf Gehrung geschnitten, Lichtverteilung direkt oder direkt/indirekt strahlend, oberer Lichtaustritt abgedeckt durch klares PMMA, unterer Lichtaustritt abgedeckt durch opale Mikroprismen, IP20, inklusive 4 Seilpendel und transparente Zuleitung L: 1500mm sowie Deckenbaldachin. Akustikelement separat bestellen!

Akustikelemente

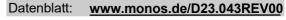
Farben Akustikelemente

Direkt A/B: 800 x 800mm

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2231	DALI	62	6572	4000	80	Mikroprisma	19	800	800	82	7	Weiss
005.0001.2235	DALI	62	6572	4000	80	Mikroprisma	19	800	800	82	7	Silbergrau
005.0001.2239	DALI	62	6572	4000	80	Mikroprisma	19	800	800	82	7	Schwarz

Akustikelemente A/B: 800 x 800mm direkt strahlend

Absorber Klasse A Brandschutz Klasse B1


Artikelnummer	Bezeichnung	Α	В	С
0001.0625	Akustikelement Weiss	678	678	40
0001.0626	Akustikelement Lichtgrau meliert	678	678	40
0001.0627	Akustikelement Hellgrau Meliert	678	678	40
0001.0628	Akustikelement Dunkelgrau meliert	678	678	40

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein

reca silentium - Pendelleuchte

Direkt/indirect A/B: 800 x 800mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2243	DALI	104	11024	4000	80	Mikroprisma	19	800	800	125	8	Weiss
005.0001.2247	DALI	104	11024	4000	80	Mikroprisma	19	800	800	125	8	Silbergrau
005.0001.2251	DALI	104	11024	4000	80	Mikroprisma	19	800	800	125	8	Schwarz

Akustikelemente A/B: 800 x 800m direkt/ indirekt strahlend

Artikelnummer	Bezeichnung	Α	В	С
0001.0629	Akustikelement Weiss	678	678	70
0001.0630	Akustikelement Lichtgrau meliert	678	678	70
0001.0631	Akustikelement Hellgrau Meliert	678	678	70
0001 0632	Akustikelement Dunkelgrau meliert	678	678	70

Absorber Klasse A Brandschutz Klasse B1

Direkt A/B: 1000 x 1000mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2255	DALI	79	8374	4000	80	Mikroprisma	19	1000	1000	82	8,3	Weiss
005.0001.2259	DALI	79	8374	4000	80	Mikroprisma	19	1000	1000	82	8,3	Silbergrau
005.0001.2263	DALI	79	8374	4000	80	Mikroprisma	19	1000	1000	82	8,3	Schwarz

Akustikelemente A/B: 1000 x 1000mm direkt strahlend

Artikelnummer	Bezeichnung	Α	В	С
0001.0633	Akustikelement Weiss	878	878	40
0001.0634	Akustikelement Lichtgrau meliert	878	878	40
0001.0635	Akustikelement Hellgrau Meliert	878	878	40
0001.0636	Akustikelement Dunkelgrau meliert	878	878	40

Absorber Klasse A
Brandschutz Klasse B1

Direkt / indirekt A/B: 1000 x 1000mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2267	DALI	133	14098	4000	80	Mikroprisma	19	1000	1000	125	9,4	Weiss
005.0001.2271	DALI	133	14098	4000	80	Mikroprisma	19	1000	1000	125	9,4	Silbergrau
005.0001.2275	DALI	133	14098	4000	80	Mikroprisma	19	1000	1000	125	9.4	Schwarz

Akustikelemente A/B: 1000 x 1000mm direkt/ indirekt strahlend

Artikelnummer	Bezeichnung	Α	В	С
0001.0459	Akustikelement Weiss	878	878	70
0001.0460	Akustikelement Lichtgrau meliert	878	878	70
0001.0461	Akustikelement Hellgrau Meliert	878	878	70
0001.0462	Akustikelement Dunkelgrau meliert	878	878	70

Absorber Klasse A Brandschutz Klasse B1

reca silentium - Pendelleuchte

Direkt A/B: 1500 x 1500mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2279	DALI	123	13038	4000	80	Mikroprisma	19	1500	1500	82	11,4	Weiss
005.0001.2283	DALI	123	13038	4000	80	Mikroprisma	19	1500	1500	82	11,4	Silbergrau
005.0001.2287	DALI	123	13038	4000	80	Mikroprisma	19	1500	1500	82	11,4	Schwarz

Akustikelemente A/B: 1500 x 1500mm direkt strahlend

Absorber Klasse A
Brandschutz Klasse B1

Artikelnummer	Bezeichnung	Α	В	С
0001.0637	Akustikelement Weiss	1378	1378	40
0001.0638	Akustikelement Lichtgrau meliert	1378	1378	40
0001.0639	Akustikelement Hellgrau Meliert	1378	1378	40
0001.0640	Akustikelement Dunkelgrau meliert	1378	1378	40

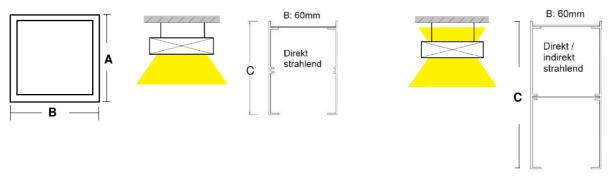
Direkt / indirekt A/B: 1500 x 1500mm

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2291	DALI	208	22048	4000	80	Mikroprisma	19	1500	1500	125	13,2	Weiss
005.0001.2295	DALI	208	22048	4000	80	Mikroprisma	19	1500	1500	125	13,2	Silbergrau
005.0001.2299	DALI	208	22048	4000	80	Mikroprisma	19	1500	1500	125	13,2	Schwarz

A/B: 1500 x 1500mm direkt/ indirekt strahlend

Absorber Klasse A Brandschutz Klasse B1

Artikelnummer	Bezeichnung	Α	В	С
0001.0641	Akustikelement Weiss	1378	1378	70
0001.0642	Akustikelement Lichtgrau meliert	1378	1378	70
0001.0643	Akustikelement Hellgrau Meliert	1378	1378	70
0001.0644	Akustikelement Dunkelgrau meliert	1378	1378	70



reca - Pendelleuchte

monos LED Pendelleuchte reca, Lichtverteilung wahlweise direkt oder direkt / indirekt strahlend, CRI80, L80/B10 bei 50.000h - 25°C, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Profil aus Aluminium, pulverbeschichtet in Farbe RAL 9016 Weiss, Leuchtenform ausgebildet als Quadrat mit freiem Innenfeld, Ecken auf Gehrung geschnitten, Lichtaustritt abgedeckt durch opalisierte Mikroprismen UGR<19, IP20, inklusive 4 Seilpendel und transparente Zuleitung L: 1500mm sowie Deckenbaldachin, Lichtspurbreite 60mm.

Direkt A/B: 600 x 600mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.3025	DALI	43	4769	4000	80	Mikroprisma	19	600	600	82	5	Weiss

Direkt/ indirekt A/B: 600 x 600mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.3029	DALI	74	8175	4000	80	Mikroprisma	19	600	600	125	5	Weiss

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K

Treiber ON/OFF, DALI

Farbwiedergabe CRI>80, CRI>90

Notlichtakku: Nein

Datenblatt: www.monos.de/D24.001REV01

reca - Pendelleuchte

Direkt A/B: 800 x 800mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2620	DALI	62	6572	4000	80	Mikroprisma	19	800	800	82	7	Weiss
005.0001.2624	DALI	62	6572	4000	80	Mikroprisma	19	800	800	82	7	Silbergrau
005.0001.2628	DALI	62	6572	4000	80	Mikroprisma	19	800	800	82	7	Schwarz

Direkt/indirect A/B: 800 x 800mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2632	DALI	104	11024	4000	80	Mikroprisma	19	800	800	125	8	Weiss
005.0001.2636	DALI	104	11024	4000	80	Mikroprisma	19	800	800	125	8	Silbergrau
005.0001.2640	DALI	104	11024	4000	80	Mikroprisma	19	800	800	125	8	Schwarz

Direkt A/B: 1000 x 1000mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2644	DALI	79	8374	4000	80	Mikroprisma	19	1000	1000	82	8,3	Weiss
005.0001.2648	DALI	79	8374	4000	80	Mikroprisma	19	1000	1000	82	8,3	Silbergrau
005.0001.2652	DALI	79	8374	4000	80	Mikroprisma	19	1000	1000	82	8,3	Schwarz

Direkt / indirekt A/B: 1000 x 1000mm

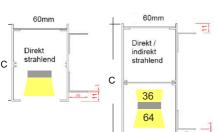
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2656	DALI	133	14098	4000	80	Mikroprisma	19	1000	1000	125	9,4	Weiss
005.0001.2660	DALI	133	14098	4000	80	Mikroprisma	19	1000	1000	125	9,4	Silbergrau
005.0001.2664	DALI	133	14098	4000	80	Mikroprisma	19	1000	1000	125	9,4	Schwarz

Direkt A/B: 1500 x 1500mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2668	DALI	123	13038	4000	80	Mikroprisma	19	1500	1500	82	11,4	Weiss
005.0001.2672	DALI	123	13038	4000	80	Mikroprisma	19	1500	1500	82	11,4	Silbergrau
005.0001.2676	DALI	123	13038	4000	80	Mikroprisma	19	1500	1500	82	11,4	Schwarz

Direkt / indirekt A/B: 1500 x 1500mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2680	DALI	208	22048	4000	80	Mikroprisma	19	1500	1500	125	13,2	Weiss
005.0001.2684	DALI	208	22048	4000	80	Mikroprisma	19	1500	1500	125	13,2	Silbergrau
005.0001.2688	DALI	208	22048	4000	80	Mikroprisma	19	1500	1500	125	13,2	Schwarz



ring silentium Pendelleuchte



monos Akustik LED Pendelleuchte ring silentium 800/ 1200/ 1500, CRI80, L80 bei 50.000h - 25°C, Gehäuse aus Aluminium. Leuchtenform ausgebildet als Ring, vorbereitet zur Aufnahme von Akustikelementen, Lichtverteilung direkt oder direkt/ indirekt. Direkter Lichtaustritt abgedeckt mit Mikrofür Bildschirmarbeitsplätze prisma UGR<19 geeignet, indirekter Lichtaustritt abgedeckt mit transparentem PMMA, IP20, inklusive Pendelsatz L: 2000mm mit transparenter Zuleitung und Deckenbaldachin in Farbe Weiss, zur abgehängten Montage. Akustikelemente separat bestellen!

Farben Akustikelemente silentium basic - einfarbig

Weiß

Lichtgrau meliert Hellgrau meliert

Dunkelgrau meliert

Akustikelemente silentium deco 3D

bestehend aus Bicolor Material (eine Seite hellgrau / eine Seite schwarz), mit unterschiedlich großen Kreisausschnitten. Durch das Wenden des ganzen Elements oder einzelner Ausschnitte lassen sich unterschiedliche Dekorvarianten erstellen.

Akustikelemente silentium deco Teleskop

bestehend aus 5 Bicolor Ringen (eine Seite hellgrau / eine Seite schwarz). Durch das Wenden einzelner Ringe lassen sich unterschiedliche Dekorvarianten erstellen.

Option -**Optik Edelrost**

www.monos.de/D24.072REV00

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K Treiber ON/OFF. DALI Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Nein Datenblatt: www.monos.de/D23.042REV03

ring silentium Pendelleuchte

direkt strahlend A: 800mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	С	Kg	Farbe
005.0001.2159	DALI	53	5618	4000	80	Mikroprisma	19	800	82	6,0	Weiss
005.0001.2163	DALI	53	5618	4000	80	Mikroprisma	19	800	82	6,0	Silbergrau
005.0001.2167	DALI	53	5618	4000	80	Mikroprisma	19	800	82	6,0	Schwarz

Akustikelemente

Artikelnummer	Bezeichnung	Α	В	
0001.0609	Akustikelement basic Weiss	678	40	basic - Absorber Klasse A
0001.0610	Akustikelement basic Lichtgrau meliert	678	40	Brandschutzklasse B1
0001.0611	Akustikelement basic Hellgrau meliert	678	40	
0001.0612	Akustikelement basic Dunkelgrau meliert	678	40	

direkt / Indirekt strahlend A: 800mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	С	Kg	Farbe
005.0001.2171	DALI	91	9646	4000	80	Mikroprisma	19	800	125	7	Weiss
005.0001.2175	DALI	91	9646	4000	80	Mikroprisma	19	800	125	7	Silbergrau
005.0001.2179	DALI	91	9646	4000	80	Mikroprisma	19	800	125	7	Schwarz

Akustikelemente

Artikelnummer	Bezeichnung	Α	В	
0001.0613	Akustikelement basic Weiss	678	70	basic - Absorber Klasse A
0001.0614	Akustikelement basic Lichtgrau meliert	678	70	Brandschutzklasse B1
0001.0615	Akustikelement basic Hellgrau meliert	678	70	
0001.0616	Akustikelement basic Dunkelgrau meliert	678	70	

direkt strahlend A: 1200mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	С	Kg	Farbe
005.0001.2183	DALI	79	8374	4000	80	Mikroprisma	19	1200	82	8	Weiss
005.0001.2187	DALI	79	8374	4000	80	Mikroprisma	19	1200	82	8	Silbergrau
005.0001.2191	DALI	79	8374	4000	80	Mikroprisma	19	1200	82	8	Schwarz

Akustikelemente

Artikelnummer	Bezeichnung	А В	
0001.0160	Akustikelement basic Weiss	1078 40	basic- Absorber Klasse A
0001.0161	Akustikelement basic Lichtgrau meliert	1078 40	Brandschutzklasse B1
0001.0162	Akustikelement basic Hellgrau meliert	1078 40	
0001.0163	Akustikelement basic Dunkelgrau meliert	1078 40	
0001.0679	Akustikelement deco Teleskop	1078 40	deco- Absorber Klasse B
0001.0682	Akustikelement deco 3D	1078 40	Brandschutzklasse B1

direkt / Indirekt strahlend A: 1200mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	С	Kg	Farbe
005.0001.2195	DALI	136	14416	4000	80	Mikroprisma	19	1200	125	9	Weiss
005.0001.2199	DALI	136	14416	4000	80	Mikroprisma	19	1200	125	9	Silbergrau
005.0001.2203	DALI	136	14416	4000	80	Mikroprisma	19	1200	125	9	Schwarz

ring silentium Pendelleuchte

Akustikelemente

Artikelnummer	Bezeichnung	А В	
0001.0164	Akustikelement basic Weiss	1078 70	basic- Absorber Klasse A
0001.0165	Akustikelement basic Lichtgrau meliert	1078 70	Brandschutzklasse B1
0001.0166	Akustikelement basic Hellgrau meliert	1078 70	
0001.0167	Akustikelement basic Dunkelgrau meliert	1078 70	
0001.0679	Akustikelement deco Teleskop	1078 40	deco- Absorber Klasse B
0001.0682	Akustikelement deco 3D	1078 40	Brandschutzklasse B1

direkt strahlend A: 1500mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	С	Kg	Farbe
005.0001.2207	DALI	100	10600	4000	80	Mikroprisma	19	1500	82	9,4	Weiss
005.0001.2211	DALI	100	10600	4000	80	Mikroprisma	19	1500	82	9,4	Silbergrau
005.0001.2215	DALI	100	10600	4000	80	Mikroprisma	19	1500	82	9,4	Schwarz

Akustikelemente

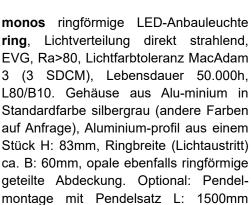
Artikelnummer	Bezeichnung	Α	В	
0001.0617	Akustikelement basic Weiss	1378	40	basic- Absorber Klasse A
0001.0618	Akustikelement basic Lichtgrau meliert	1378	40	Brandschutzklasse B1
0001.0619	Akustikelement basic Hellgrau meliert	1378	40	
0001.0620	Akustikelement basic Dunkelgrau meliert	1378	40	
0001.0680	Akustikelement deco Teleskop	1378	40	deco- Absorber Klasse B
0001.0683	Akustikelement deco 3D	1378	40	Brandschutzklasse B1

direkt / Indirekt strahlend A: 1500mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	С	Kg	Farbe
005.0001.2219	DALI	170	18020	4000	80	Mikroprisma	19	1500	125	11	Weiss
005.0001.2223	DALI	170	18020	4000	80	Mikroprisma	19	1500	125	11	Silbergrau
005.0001.2227	DALI	170	18020	4000	80	Mikroprisma	19	1500	125	11	Schwarz

Akustikelemente

Artikelnummer	Bezeichnung	A 1	В	
0001.0621	Akustikelement basic Weiss	1378 7	70	basic- Absorber Klasse A
0001.0622	Akustikelement basic Lichtgrau meliert	1378 7	70	Brandschutzklasse B1
0001.0623	Akustikelement basic Hellgrau meliert	1378 7	70	
0001.0624	Akustikelement basic Dunkelgrau meliert	1378 7	70	
0001.0680	Akustikelement deco Teleskop	1378 4	40	deco- Absorber Klasse B
0001.0683	Akustikelement deco 3D	1378 4	40	Brandschutzklasse B1

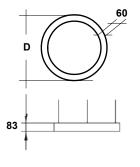


ring Anbau/ Pendelleuchte

möglich. Pendelsatz separat bestellen.

Artikelnummer	· W	D
7305.002.01.*	35W	600mm
7305.002.02.*	48W	800mm
7505.002.03.*	62W	1000mm
7505.002.04.*	75W	1200mm
7305.002.05.*	92W	1500mm
7305.002.06.*	123W	2000mm

Sondergrößen zwischen D:400mm – D:5000mm möglich!



Fotomontage

Zubehör:

Artikelnumi	mer D	Bezeichnung
7005.06.01	600mm	Abdeckung zur Auflage
7005.06.02	800mm	auf der Rückseite der
7005.06.03	1000mm	Leuchte. Zur Abdeckung
7005.06.04	1200mm	von rückseitig an der
7005.06.05	1500mm	Leuchte angebrachten
7005.06.06	2000mm	Schrauben, Nieten etc.

Artikelnummer
7305.002.01.1

Vorschaltgerät
3 EVG
5 Dali

Lichtfarbe 35W 48W 62W 75W 92W 123W

- *** 1=** 3000K 4500m 6000lm 7500lm 9300lm 11500lm 14500lm
- * 2= 4000K 4700lm 6300lm 7800lm 9700lm 12100lm 15200lm

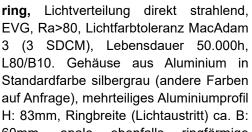
Option - Optik Edelrost

www.monos.de/D24.072REV00

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.106REV01

ring Pendelleuchte - bis D:5000mm



Artikelnumme	r W	D
7305.002.07.*	173W	2500mm
7305.002.08.*	207W	3000mm
7305.002.09.*	276W	4000mm
7305.002.10.*	345W	5000mm

Sondergrößen zwischen D:400mm - D:5000mm möglich!

monos ringförmige LED-Pendelleuchte, 60mm, opale ebenfalls ringförmige geteilte Abdeckung.

Inklusive Pendelsatz L:1500mm mit transparenter Zuleitung und Deckenbaldachin.

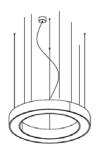
Zubehör:

Artikelnummer D

7005.06.07 2500mm (3-teilig) Abdeckung zur Auflage 7005.06.08 3000mm (4-teilig) auf der Rückseite der 7005.06.09 4000mm (4-teilig) Leuchte. Zur Ab-

Nieten etc.

Bezeichnung


7005.06.10 5000mm (4-teilig) deckung von rückseitig an der Leuchte angebrachten Schrauben,

60

Leuchte ohne Abdeckung

Leuchte mit Abdeckung

Pendelsatz:

D: 2500mm = 9 Seile D: 3000mm = 16 Seile

D: 4000mm = 16 Seile

D: 5000mm = 16 Seile

D Artikelnummer 7305.002.07.1 Vorschaltgerät 3 EVG 83 5 Dali 207W 276W

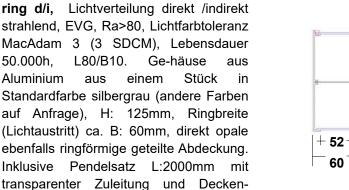
2500 mm	= 3 -teiliges	Gehäuse
3000 mm - 5000 mm	= 4-teiliges	Gehäuse

Lichtfarbe 345W 173W **1**= 3000K 14287lm 17144lm 22859lm 28574lm 15144lm 18172lm 24230lm 30288lm **2**= 4000K

ring Pendelleuchte direkt/ indirekt

monos ringförmige LED Pendelleuchte,

einem


L80/B10.

36%	
64%	
direkt/indire	ekt

+ 52 +

Artikelnumme	r W	D
4305.002.01.*	62W	600mm
4305.002.02.*	91W	800mm
4305.002.03.*	113W	1000mm
4305.002.04.*	136W	1200mm
4305.002.05.*	170W	1500mm
4305.002.06.*	237W	2000mm

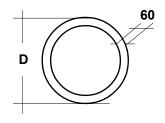
Sondergrößen zwischen D:400mm - D:5000mm möglich!

Fotomontage

50.000h,

Aluminium aus

D: 600 - 1200mm = 3 Seile D: 1500mm = 4 Seile D: 2000mm = 6 Seile


Pendels atz:

Artikelnummer 4305.002.01.1

> Vorschaltgerät 3 EVG 5 Dali

	Lic	htfarbe	62W	91W	113W	136W	170W	237W
*	1=	3000K	6324m	9282lm	11526lm	13872lm	17340lm	24174lm
	_							

Option - Optik Edelrost www.monos.de/D24.072REV00

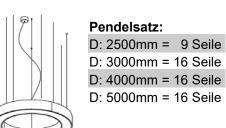
Ausstattungsvarianten:

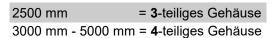
3000K, 4000K, 6500K Lichtfarben: Treiber ON/OFF. DALI Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Nein Datenblatt: www.monos.de/D25.013REV00

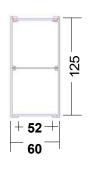
ring Pendelleuchte direkt/ indirekt

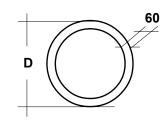
	36%	
	64%	
d	irekt/indire	kt

Artikelnumme	r W	D
4305.002.07.*	308W	2500mm
4305.002.08.*	368W	3000mm
4305.002.09.*	491W	4000mm
4305.002.10.*	614W	5000mm


Sondergrößen zwischen D:400mm - D:5000mm möglich!

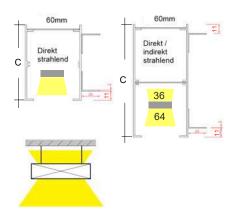


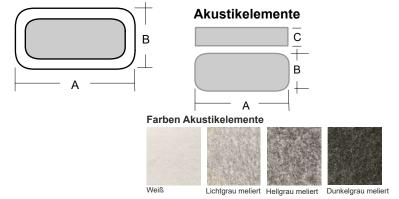

monos ringförmige LED Pendelleuchte, Lichtverteilung direkt/ indirekt strahlend, EVG, Ra>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Lebensdauer 50.000h, L80/B10. Gehäuse Aluminium in Standardfarbe silbergrau (andere Farben auf Anfrage), mehrteiliges Aluminiumprofil H: 125mm, Ringbreite (Lichtaustritt) ca. B: 60mm, opale ebenfalls ringförmige geteilte Abdeckung. Inklusive Pendelsatz L:2000mm mit transparenter Zuleitung und Deckenbaldachin.



	elnummer 002.07.1					
 Vorschaltgerä						
L ₃	EVG					
5	Dali					

	Lichtfarbe	308W	368W	491W	614W	
*	1 = 3000K	31416lm	37536lm	50082lm	62628m	
*	2 = 4000K	32648lm	39008lm	52046lm	65084m	





ariga silentium Pendelleuchte

monos Akustik LED Pendelleuchte ariga silentium, CRI80, L80 bei 50.000h - 25°C, Gehäuse aus Aluminium in Farbe Weiss, Silbergrau oder Schwarz. Leuchtenform ausgebildet als Quadrat abgerundeten Ecken, vorbereitet zur Aufnahme von Lichtverteilung Akustikelementen. direkt oder direkt/indirekt. Direkter Lichtaustritt abgedeckt mit Mikroprisma UGR<19 für Bildschirmarbeitsplätze indirekter Lichtaustritt abgedeckt geeignet, transparentem PMMA, IP20, inklusive Pendelsatz L: Zuleitung 2000mm mit transparenter Deckenbaldachin in Farbe Weiss, zur abgehängten Montage. Akustikelement separat bestellen!

Direkt A/B: 1200 x 600mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2303	DALI	66	6996	4000	80	Mikroprisma	19	1200	600	82	8	Weiss
005.0001.2307	DALI	66	6996	4000	80	Mikroprisma	19	1200	600	82	8	Silbergrau
005.0001.2311	DALI	66	6996	4000	80	Mikroprisma	19	1200	600	82	8	Schwarz

Akustikelemente Direkt strahlend A/B: 1200 x 600mm

Artikelnummer	Bezeichnung	Α	В	С
0001.0144	Akustikelement Weiss	1078	478	40
0001.0145	Akustikelement Lichtgrau	1078	478	40
0001.0146	Akustikelement Hellgrau	1078	478	40
0001.0147	Akustikelement Dunkelgrau	1078	478	40

Absorber Klasse A Brandschutzklasse B1

Ausstattungsvarianten:

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K						
Treiber	ON/OFF, DALI						
Farbwiedergabe	CRI>80, CRI>90						
Notlichtakku:	Nein						
Datenblatt: www.mor	nos.de/D23.044REV00						

ariga silentium Pendelleuchte

Direkt / indirekt A/B: 1200 x 600mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2315	DALI	113	11978	4000	80	Mikroprisma	19	1200	600	125	9	Weiss
005.0001.2319	DALI	113	11978	4000	80	Mikroprisma	19	1200	600	125	9	Silbergrau
005.0001.2323	DALI	113	11978	4000	80	Mikroprisma	19	1200	600	125	9	Schwarz

Akustikelemente Direkt/ indirekt strahlend A/B: 1200 x 600mm

 Artikelnummer
 Bezeichnung
 A
 B
 C

 0001.0148
 Akustikelement Weiss
 1078
 478
 70

 0001.0149
 Akustikelement Lichtgrau
 1078
 478
 70

 0001.0150
 Akustikelement Hellgrau
 1078
 478
 70

 0001.0151
 Akustikelement Dunkelgrau
 1078
 478
 70

Absorber Klasse A Brandschutzklasse B1

Direkt A/B: 1200 x 1200mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2327	DALI	93	9858	4000	80	Mikroprisma	19	1200	1200	82	10	Weiss
005.0001.2331	DALI	93	9858	4000	80	Mikroprisma	19	1200	1200	82	10	Silbergrau
005.0001.2335	DALI	93	9858	4000	80	Mikroprisma	19	1200	1200	82	10	Schwarz

Akustikelemente Direkt strahlend A/B: 1200 x 1200mm

 Artikelnummer
 Bezeichnung
 A
 B
 C

 0001.0645
 Akustikelement Weiss
 1078
 1078
 40

 0001.0646
 Akustikelement Lichtgrau
 1078
 1078
 40

 0001.0647
 Akustikelement Hellgrau
 1078
 1078
 40

 0001.0648
 Akustikelement Dunkelgrau
 1078
 1078
 40

Absorber Klasse A Brandschutzklasse B1

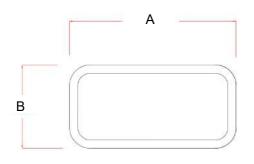
Direkt / indirekt A/B: 1200 x 1200mm

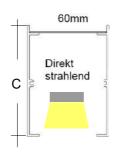
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2339	DALI	159	16854	4000	80	Mikroprisma	19	1200	1200	125	11	Weiss
005.0001.2343	DALI	159	16854	4000	80	Mikroprisma	19	1200	1200	125	11	Silbergrau
005.0001.2347	DALI	159	16854	4000	80	Mikroprisma	19	1200	1200	125	11	Schwarz

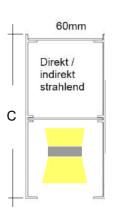
Akustikelemente Direkt/ indirekt strahlend A/B: 1200 x 1200mm

Artikelnummer	Bezeichnung	Α	В	С
0001.0649	Akustikelement Weiss	1078	1078	70
0001.0650	Akustikelement Lichtgrau	1078	1078	70
0001.0651	Akustikelement Hellgrau	1078	1078	70
0001.0652	Akustikelement Dunkelgrau	1078	1078	70

Absorber Klasse A Brandschutzklasse B1






ariga - Pendelleuchte

monos LED Pendelleuchte ariga, EVG, L80 bei 50.000h - 25°C, Gehäuse aus Aluminium, in Farbe Weiss, Silbergrau oder Schwarz, Leuchtenform ausgebildet als Quadrat mit abgerundeten Ecken, Lichtverteilung direkt oder direkt/indirekt. Lichtaustritt opalisiertes Mikroprisma UGR<19 für Bildschirmarbeitsplätze geeignet, IP20, inklusive Pendelsatz L: 2000mm mit transparenter Zuleitung 5x0,75mm² und Deckenbaldachin in Farbe Weiss, zur abgehängten Montage.

direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С
005.0001.0237	Dali	66	7722	4000	80	>0,95	Mikroprisma	UGR<19	Weiss	1200	600	82
005.0001.0241	Dali	66	7722	4000	80	>0,95	Mikroprisma	UGR<19	Silbergrau	1200	600	82
005.0001.0245	Dali	66	7722	4000	80	>0,95	Mikroprisma	UGR<19	Schwarz	1200	600	82

Ausstattungsvarianten:

Datenblatt

Datenblatt: www.mo	nos de/22 042DRFV00
Notlichtakku:	Nein
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF, DALI
Lichtfarben:	3000K, 4000K, 6500K

ariga - Pendelleuchte

direkt / Indirekt strahlend

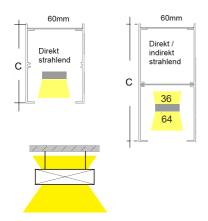
Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С
005.0001.0249	Dali	113	12314	4000	80	>0,95	Mikroprisma	UGR<19	Weiss	12006	00	125
005.0001.0253	Dali	113	12314	4000	80	>0,95	Mikroprisma	UGR<19	Silbergrau	12006	00	125
005.0001.0937	Dali	113	12314	4000	80	>0,95	Mikroprisma	UGR<19	Schwarz	12006	00	125

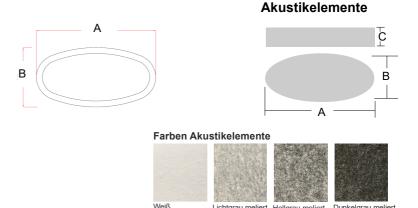
direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С
005.0001.1331	Dali	93	9858	4000	80	>0,95	Mikroprisma	UGR<19	Weiss	1200	1200	82
005.0001.1335	Dali	93	9858	4000	80	>0,95	Mikroprisma	UGR<19	Silbergrau	1200	1200	82
005.0001.1339	Dali	93	9858	4000	80	>0,95	Mikroprisma	UGR<19	Schwarz	1200	1200	82

direkt / Indirekt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С
005.0001.1343	Dali	159	16854	4000	80	>0,95	Mikroprisma	UGR<19	Weiss	1200	1200	120
005.0001.1347	Dali	159	16854	4000	80	>0,95	Mikroprisma	UGR<19	Silbergrau	1200	1200	120
005.0001.1351	Dali	159	16854	4000	80	>0,95	Mikroprisma	UGR<19	Schwarz	1200	1200	120




Drago silentium - Pendelleuchte

monos LED Pendelleuchte drago silentium, vorbereitet zur Aufnahme von Akustikelementen, EVG/ DALI, L80 bei 50.000h - 25°C, Lichtverteilung direkt oder direkt/ indirekt strahlend, Profil aus Aluminium, pulverbeschichtet in RAL Farbe Weiss, Silbergrau oder Schwarz, Leuchtenform ausgebildet als Oval, Lichtaustritt opalisiertes Mikroprisma UGR<19 für Bildschirmarbeitsplätze geeignet, IP20, inklusive 4 Seilpendel und transparente Zuleitung L: 1500mm und Deckenbaldachin, Lichtspurbreite 60mm.

Akustikelemente separat bestellen!

Direkt A/B: 1200 x 600mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2351	DALI	57	6042	4000	80	Mikroprisma	19	1200	600	82	7	Weiss
005.0001.2355	DALI	57	6042	4000	80	Mikroprisma	19	1200	600	82	7	Silbergrau
005.0001.2359	DALI	57	6042	4000	80	Mikroprisma	19	1200	600	82	7	Schwarz

Akustikelemente Direkt strahlend A/B: 1200 x 600mm

Absorber Klasse A Brandschutzklasse B1

Artikelnummer	Bezeichnung	Α	В	С
0001.0152	Akustikelement Weiss	1078	478	40
0001.0153	Akustikelement Lichtgrau meliert	1078	478	40
0001.0154	Akustikelement Hellgrau meliert	1078	478	40
0001.0155	Akustikelement Dunkelgrau meliert	1078	478	40

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D23.045REV00

Drago silentium - Pendelleuchte

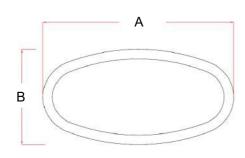
Direkt / indirekt A/B: 1200 x 600mm

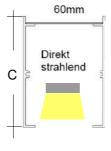
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR<	Α	В	С	Kg	Farbe
005.0001.2363	DALI	98	10388	4000	80	Mikroprisma	19	1200	600	125	8	Weiss
005.0001.2367	DALI	98	10388	4000	80	Mikroprisma	19	1200	600	125	8	Silbergrau
005.0001.2545	DALI	98	10388	4000	80	Mikroprisma	19	1200	600	125	8	Schwarz

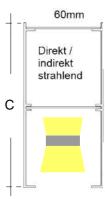
Akustikelemente Direkt/indirekt strahlend A/B: 1200 x 600mm

Artikelnummer	Bezeichnung	Α	В	С
0001.0156	Akustikelement Weiss	1078	478	40
0001.0157	Akustikelement Lichtgrau meliert	1078	478	40
0001.0158	Akustikelement Hellgrau meliert	1078	478	40
0001.0159	Akustikelement Dunkelgrau meliert	1078	478	40

Absorber Klasse A Brandschutz Klasse B1






drago - Pendelleuchte

monos LED Pendelleuchte drago, EVG, L80 bei 50.000h 25°C. Gehäuse Aluminium, aus Leuchtenfoorm ausgebildet als Oval, Lichtaustritt Mikroprisma opalisiertes UGR<19 Bildschirmarbeitsplätze geeignet, IP20, inklusive Pendelsatz L: 2000mm mit transparenter Zuleitung 5x0,75mm² und Deckenbaldachin in Farbe Weiss, zur abgehängten Montage. Maße L: 1200mm x B: 600mm x H:82mm.

direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	UGR<	Farbe	Α	В	С
005.0001.0260	Dali	58	6692	4000	80	>0,95	Mikroprisma	19	Weiss	12006	300	82
005.0001.0264	Dali	58	6692	4000	80	>0,95	Mikroprisma	19	Silbergrau	12006	300	82
005.0001.0268	Dali	58	6692	4000	80	>0,95	Mikroprisma	19	Schwarz	12006	300	82

direkt / Indirekt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	UGR<	Farbe	Α	В	С
005.0001.0272	Dali	98	10671	4000	80	>0,95	Mikroprisma	19	Weiss	1200	600	125
005.0001.0276	Dali	98	10671	4000	80	>0,95	Mikroprisma	19	Silbergrau	1200	600	125
005.0001.0280	Dali	98	10671	4000	80	>0,95	Mikroprisma	19	Schwarz	1200	600	125

Option -**Optik Edelrost**

www.monos.de/D24.072REV00 Optionen:

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K ON/OFF, DALI Treiber Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Nein Datenblatt: www.monos.de/22.013DREV00

Optik Edelrost

monos Optik Edelrost für alle Leuchten der Serien ring und ringo. Die Leuchtengehäuse werden zunächst in brauner Farbe grundiert. Anschließend wird die Edelrostbeschichtung mit einer Bürste aufgetragen. Da dies in Handarbeit erfolgt, erhält jede Leuchte ein ähnliches aber doch individuelles Aussehen.

Mehrpreis für Oberfläche Edelrost

ring direkt + direkt indirekt	
0001.0483	Ring direkt + direkt indirekt D: 600 mm
0001.0484	Ring direkt + direkt indirekt D: 800 mm
0001.0485	Ring direkt + direkt indirekt D: 1000 mm
0001.0486	Ring direkt + direkt indirekt D: 1200 mm
0001.0487	Ring direkt + direkt indirekt D: 1500 mm
0001.0488	Ring direkt + direkt indirekt D: 2000 mm
0001.0489	Ring direkt + direkt indirekt D: 2500 mm
0001.0490	Ring direkt + direkt indirekt D: 3000 mm
0001.0491	Ring direkt + direkt indirekt D: 4000 mm
0001.0492	Ring direkt + direkt indirekt D: 5000 mm

riligo		
0001.0493	Ringo D:	432mm
0001.0494	Ringo D:	607mm
0001.0495	Ringo D:	798mm
0001.0496	Ringo D:1	1006mm
0001.0497	Ringo D:1	179mm
0001.0498	Ringo D:1	1540mm
0001.0499	Ringo D:1	974mm

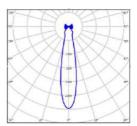
Andere Leuchten auf Anfrage!

Edelrostbeschichtung wird mit einer Bürste aufgetragen. Sichtbare Unterschiede in der Beschichtung sind beabsichtigt.

Datenblatt: www.monos.de/D24.072REV00

Shoplight

aurora elegance - Stromschienenstrahler Ra>90


monos LED Schienenstrahler aurora elegance, CRI>90below BBL, mit Euro-Universaladapter zum Betrieb an einer 3-Phasen-Stromschiene, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau oder Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50° inklusive Markentreiber.

24°- 37W- 3000K- 129Im/W

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik/>°	Farbe	Garantie	IP
075.0001.0023	700mA	30	2751	4000	90	15	Weiss	5	20
075.0001.0024	700mA	30	2751	4000	90	24	Weiss	5	20
075.0001.0025	700mA	30	2751	4000	90	36	Weiss	5	20
075.0001.0026	700mA	30	2751	4000	90	50	Weiss	5	20
075.0001.0047	900mA	37	3330	4000	90	15	Weiss	5	20
075.0001.0048	900mA	37	3330	4000	90	24	Weiss	5	20
075.0001.0049	900mA	37	3330	4000	90	36	Weiss	5	20
075.0001.0050	900mA	37	3330	4000	90	50	Weiss	5	20

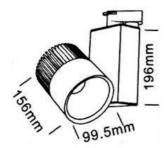
Datenblatt

Ausstattungsvarianten:

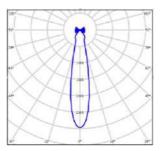
Lichtfarben: 3000K, 4000K, 6500K Treiber ON/OFF Farbwiedergabe CRI>80, CRI>90

Notlichtakku: Nein

Datenblatt: www.monos.de/21.018DREV00



aurora - Stromschienenstrahler Ra>90



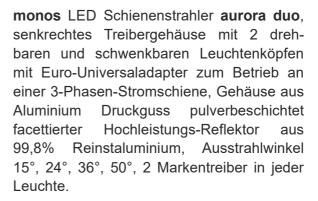
monos LED Schienenstrahler **aurora**, mit Euro-Universaladapter zum Betrieb an einer 3-Phasen-Stromschiene, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau oder Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50°, inklusive Markentreiber

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik/>°	Farbe	Garantie	IP
075.0001.0071	700mA	30	2751	4000	90	15	Weiss	5	20
075.0001.0072	700mA	30	2751	4000	90	24	Weiss	5	20
075.0001.0073	700mA	30	2751	4000	90	36	Weiss	5	20
075.0001.0074	700mA	30	2751	4000	90	50	Weiss	5	20
075.0001.0095	900mA	37	3330	4000	90	15	Weiss	5	20
075.0001.0096	900mA	37	3330	4000	90	24	Weiss	5	20
075.0001.0097	900mA	37	3330	4000	90	36	Weiss	5	20
075.0001.0098	900mA	37	3330	4000	90	50	Weiss	5	20

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/21.019DREV00



aurora duo - Stromschienenstrahler CRI>90

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik >°	Farbe
075.0001.0739	Standard	2x20	2x2005	4000	90	15	Weiss
075.0001.0740	Standard	2x20	2x2005	4000	90	24	Weiss
075.0001.0741	Standard	2x20	2x2005	4000	90	36	Weiss
075.0001.0742	Standard	2x20	2x2005	4000	90	50	Weiss
075.0001.0763	Standard	2x30	2x2940	4000	90	15	Weiss
075.0001.0764	Standard	2x30	2x2940	4000	90	24	Weiss
075.0001.0765	Standard	2x30	2x2940	4000	90	36	Weiss
075.0001.0766	Standard	2x30	2x2940	4000	90	50	Weiss

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/22.004DREV00

Aurora e-line - Stromschienenstrahler CRI>90

monos LED Schienenstrahler aurora e-line, Treiber im Stromschienenadapter, CRI>90 (below BBL), Lichtfarbtoleranz MacAdam 3, L80/B10 bei 50.000h, mit Euro-Universaladapter zum Betrieb an einer 3-Phasen-Stromschiene, Gehäuse aus Aluminium Druckguss Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50°, hocheffizientes Sicherheitsglas, Lichtdurchlässigkeit 97%.

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik >°	Farbe	PF
075.0001.0883	Standard	30	3150	4000	90	15	Weiss	0,96
075.0001.0884	Standard	30	3150	4000	90	24	Weiss	0,96
075.0001.0885	Standard	30	3150	4000	90	36	Weiss	0,96
075.0001.0886	Standard	30	3150	4000	90	50	Weiss	0,96
075.0001.1380	Standard	37	3890	4000	90	15	Weiss	0,96
075.0001.0907	Standard	37	3890	4000	90	24	Weiss	0,96
075.0001.0908	Standard	37	3890	4000	90	36	Weiss	0,96
075.0001.0909	Standard	37	3890	4000	90	50	Weiss	0,96

Ausstattungsvarianten:

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein
Datenblatt: www.mo	nos.de/22.009DREV00

Aurora line - Stromschienenstrahler CRI>90

monos LED Schienenstrahler aurora line, Treiber im Leuchtenkopf, CRI>90 (below BBL), Lichtfarbtoleranz MacAdam 3, L80/B10 bei 50.000h, mit Euro-Universaladapter zum Betrieb an einer 3-Phasen-Stromschiene, Farbe Weiss, Silbergrau oder Schwarz, Gehäuse aus Aluminium Druckguss Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50°, hocheffizientes Sicherheitsglas, Lichtdurchlässigkeit 97%.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik >°	Farbe	PF
075.0001.0811	Standard	13	1730	4000	90	15	Weiss	0,96
075.0001.0812	Standard	13	1730	4000	90	24	Weiss	0,96
075.0001.0813	Standard	13	1730	4000	90	36	Weiss	0,96
075.0001.0814	Standard	13	1730	4000	90	50	Weiss	0,96
075.0001.0835	Standard	22	2415	4000	90	15	Weiss	0,96
075.0001.0836	Standard	22	2415	4000	90	24	Weiss	0,96
075.0001.0837	Standard	22	2415	4000	90	36	Weiss	0,96
075.0001.0838	Standard	22	2415	4000	90	50	Weiss	0,96
075.0001.0859	Standard	27	2900	4000	90	15	Weiss	0,96
075.0001.0860	Standard	27	2900	4000	90	24	Weiss	0,96
075.0001.0861	Standard	27	2900	4000	90	36	Weiss	0,96
075.0001.0862	Standard	27	2900	4000	90	50	Weiss	0,96

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/22.012DREV00

Aurora line r - Deckeneinbaustrahler CRI>90

monos LED Schienenstrahler aurora line r, Treiber im Leuchtenkopf, CRI>90 (below BBL), Lichtfarbtoleranz MacAdam 3, L80/B10 bei 50.000h, zum Einbau in geschnittene Deckenöffnung, Außenmaß Einbaurahmen 111mm x 111mm, Deckenausschnitt 95mm x 95mm, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau und Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50°, hocheffizientes Sicherheitsglas, Lichtdurchlässigkeit 97%.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik >°	Farbe	PF
075.0001.1002	Standard	13	1730	4000	90	15	Weiss	0,96
075.0001.1003	Standard	13	1730	4000	90	24	Weiss	0,96
075.0001.1004	Standard	13	1730	4000	90	36	Weiss	0,96
075.0001.1005	Standard	13	1730	4000	90	50	Weiss	0,96
075.0001.1026	Standard	22	2415	4000	90	15	Weiss	0,96
075.0001.1027	Standard	22	2415	4000	90	24	Weiss	0,96
075.0001.1028	Standard	22	2415	4000	90	36	Weiss	0,96
075.0001.1029	Standard	22	2415	4000	90	50	Weiss	0,96
075.0001.1050	Standard	27	2900	4000	90	15	Weiss	0,96
075.0001.1051	Standard	27	2900	4000	90	24	Weiss	0,96
075.0001.1052	Standard	27	2900	4000	90	36	Weiss	0,96
075.0001.1053	Standard	27	2900	4000	90	50	Weiss	0,96

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/22.010DREV00

Aurora easy - Stromschienenstrahler CRI>90

Monos LED Strahler **aurora easy**, Treiber im Leuchtenkopf, CRI>90 (below BBL), Lichtfarbtoleranz MacAdam 3, L80/B10 bei 50.000h, mit Euro-Universaladapter zum Betrieb an einer 3-Phasen-Stromschiene, Gehäuse aus Aluminium Druckguss Reinstaluminium in Farbe Weiss, Silbergrau und Schwarz, Ausstrahlwinkel 15°, 24°, 36°, 50°, hocheffizientes Sicherheitsglas, Lichtdurchlässigkeit 97%.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik >°	Farbe	PF
075.0001.0930	Standard	13	1730	4000	90	15	Weiss	0,96
075.0001.0931	Standard	13	1730	4000	90	24	Weiss	0,96
075.0001.0932	Standard	13	1730	4000	90	36	Weiss	0,96
075.0001.0933	Standard	13	1730	4000	90	50	Weiss	0,96
075.0001.0954	Standard	22	2415	4000	90	15	Weiss	0,96
075.0001.0955	Standard	22	2415	4000	90	24	Weiss	0,96
075.0001.0956	Standard	22	2415	4000	90	36	Weiss	0,96
075.0001.0957	Standard	22	2415	4000	90	50	Weiss	0,96
075.0001.0978	Standard	27	2900	4000	90	15	Weiss	0,96
075.0001.0979	Standard	27	2900	4000	90	24	Weiss	0,96
075.0001.0980	Standard	27	2900	4000	90	36	Weiss	0,96
075.0001.0981	Standard	27	2900	4000	90	50	Weiss	0,96

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein

Datenblatt: www.monos.de/22.008DREV00

Aurora line s - Strahler für Deckenanbau CRI>90

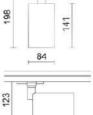
monos LED Strahler aurora line s, Treiber im Leuchtenkopf, CRI>90 (below BBL), Lichtfarbtoleranz MacAdam 3, L80/B10 bei 50.000h, mit Deckenrosette zur Anbaumontage, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau und Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50°, hocheffizientes Sicherheitsglas, Lichtdurchlässigkeit 97%.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik >°	Farbe	PF
075.0001.1074	Standard	13	1730	4000	90	15	Weiss	0,96
075.0001.1075	Standard	13	1730	4000	90	24	Weiss	0,96
075.0001.1076	Standard	13	1730	4000	90	36	Weiss	0,96
075.0001.1077	Standard	13	1730	4000	90	50	Weiss	0,96
075.0001.1098	Standard	22	2415	4000	90	15	Weiss	0,96
075.0001.1099	Standard	22	2415	4000	90	24	Weiss	0,96
075.0001.1100	Standard	22	2415	4000	90	36	Weiss	0,96
075.0001.1101	Standard	22	2415	4000	90	50	Weiss	0,96
075.0001.1122	Standard	27	2900	4000	90	15	Weiss	0,96
075.0001.1123	Standard	27	2900	4000	90	24	Weiss	0,96
075.0001.1124	Standard	27	2900	4000	90	36	Weiss	0,96
075.0001.1125	Standard	27	2900	4000	90	50	Weiss	0,96

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/22.011DREV00



circo Stromschienenstrahler - phase dim

monos LED Schienenstrahler circo, CRI>80, Lichtfarbtoleranz MacAdam 3, L80/B20 bei 50.000h, mit Euro-Universaladapter zum Betrieb an einer 3-Phasen-Stromschiene, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe weiß, facettierter Reflektor, Ausstrahlwinkel 38° (Andere Ausstrahlwinkel gegen Aufpreis), Maße D: 84mm x H: 188mm, dimmbar mit Phasenan- oder abschnittsdimmer.

198

141

159

9.5W

Artikelnummer Ausstrahlwinkel

8342.001.01.*

38°

19W

Artikelnummer Ausstrahlwinkel 8342.002.01.* 38°

33W

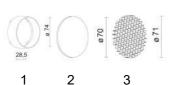
Artikelnummer Ausstrahlwinkel

8342.003.01.*

38°

Farbauswahl:

W = Weiß
S = Silbergrau
SW = Schwarz
an die Artikelnummer
anhängen:


z.B.: 8342.001.01.1S

 \mathbf{n}	nor.
	hör
\sim	

Artikelnummmer Bezeichnung

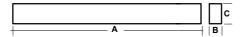
8042.001.01	Aufpreis für Wechselreflektor 20° facettiert	
8042.001.02	Aufpreis für Wechselreflektor 60 ° facettiert	
8042.001.03	Aufpreis für Wechselreflektor 70° weiß	
8042.002.01	Aufpreis für Entblendring schwarz zum Aufstecken	(1)
8042.002.02	Aufpreis für Glas klar für Entblendring	(2)
8042.002.03	Fleisch- und Brotfilter (pink) für Entblendring	(2)
8042.002.04	Wabenraster für Entblendring	(3)

	Lichtfarbe	9,5W	19W	33W
*	1 = 3000K	890lm	1780lm	2670lm
*	2 = 4000K	890lm	1780lm	2670lm

Ausstattungsvarianten:

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein
Datenblatt: www.mon	os.de/D24.006REV00



acis - Leuchte für Stromschiene - CRI>90

monos LED Anbauleuchte acis CRI>90 - Anbauleuchte mit 2 Global 69 Universaladapter für 3-Phasen Stromschiene, EVG, rechteckiges Gehäuse aus Aluminium, Standardfarbe Weiss (andere Farben auf Anfrage), opale Abdeckung.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	PF	Α	В	С
075.0001.1141	Standard	36	3517	4000	90	opal	0,96	1200	65	80
075.0001.1142	Standard	45	4567	4000	90	opal	0,96	1200	65	80
075.0001.1143	Standard	50	4882	4000	90	opal	0,96	1500	65	80
075.0001.1144	Standard	63	6510	4000	90	opal	0.96	1500	65	80

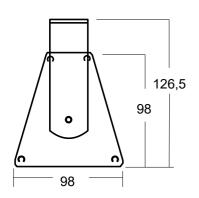
Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/22.018DREV00

tria - Anbauleuchte für 3-Phasen-Stromschiene

Artikelnummer W L 8305.001.01.* 15W 300mm 8305.001.02.* 30W 600mm 8505.001.03.* 45W 900mm


monos LED Anbauleuchte tria mit Universaladapter für 3-Phasen Stromschiene, EVG, Licht-farbtoleranz MacAdam 3 (3 SDCM), 50.000h-L80/B10, Gehäuse aus Aluminium und Stahlblech in 3-Ecksform, Standardfarbe schwarz (andere Farben auf Anfrage), Optik Spiegelraster, +/- 45° drehbare Ausleger zur Anstrahlung von Wänden und Regalen geeignet. L: 300mm x B: 98mm x H: 98mm (inklusive Ausleger H: 127mm)

Zubehör

(bei DALI Ausführung einmal je Leuchte bestellen):

Artikelnummer Bezeichnung

6542.30.01 3-Phasen-DALI Adapter weiß 6542.30.03 3-Phasen-DALI Adapter schwarz

	Lichtfarbe	15W	30W	45W
*	1 = 3000K	1892lm	3783lm	5675lm
4	2= 4000K	1950lm	3900lm	5850lm

Ausstattungsvarianten:

Datenblatt

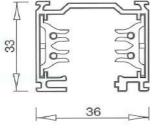
Lichtfarben: 3000K, 4000K, 6500K

Treiber ON/OFF

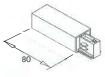
Farbwiedergabe CRI>80, CRI>90

Notlichtakku: Nein

Datenblatt: www.monos.de/D24.007REV00

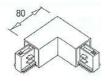


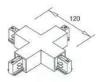
3 Phasen-Aufbau-Stromschienen

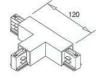


Artikelnummer	Länge	Farbe	
6342.01. <mark>01</mark>	1m	weiß	
6342.02. <mark>01</mark>	2m	weiß	
6342.03. <mark>01</mark>	3m	weiß	
6342.04. <mark>01</mark>	4m	weiß	

**


01= weiß 02= silber 03= schwarz


Einspeisung
Artikelnummer
6342.28.** rechts
Artikelnummer
6342.29.** links


3-Phasen Universaladapter Artikelnummer 6342.30.**

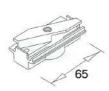
90° Ecke Artikelnummer 6342.20.** innen Artikelnummer 6342.21.** außen

Kreuz-Verbinder Artikelnummer 6342.24.**

T-Verbinder
Artikelnummer
6342.22.** rechts
Artikelnummer
6342.23.** links

Zentral-Einspeisung Artikelnummer 6342.26.**

flexib. Verbinder Artikelnummer 6342.25.**


Endkappe Artikelnummer 6342.40.**

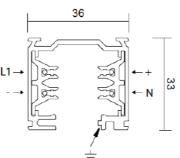
elektrischer Längsverbinder Artikelnummer 6342.27.**

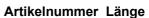
Decken-Befestigung Artikelnummer 6342.06.00

mechanischer Adapter Artikelnummer 6342.32.**

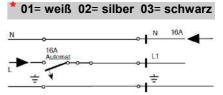
Seilpendel, 2m Artikelnummer 6342.07.01 Nur in weiß lieferbar

Datenblatt: www.monos.de/D24.005REV00

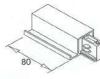




1 Phasen- Aufbau- Stromschiene DALI

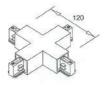


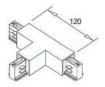
6542.01.*	1m
6542.02.*	2m
6542.03.*	3m



3-Phasen Universaladapter **Artikelnummer**

6542.30.*


Zentral- Einspeisung **Artikelnummer** 6542.26.*


Einspeisung Artikelnummer 6542.28.* rechts

Artikelnummer

6542.29.* links

Kreuz-Verbinder Artikelnummer 6542.24.*

T-Verbinder Artikelnummer 6542.22.* * rechts:

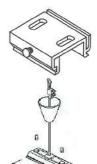
Artikelnummer

6542.23.* links:

flexib. Verbinder Artikelnummer 6542.25.*

elektrischer Längsverbinder Artikelnummer

6542.35.*



mechanischer Längsverbinder **Artikelnummer** 6542.36.*

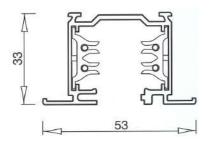
Endkappe ArtikeInummer 6542.40.*

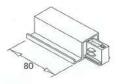
90° Ecke

Decken-Befestigung Artikelnummer 6542.06.00

Artikelnummer 6542.20.* innen **Artikelnummer** 6542.21.* außen

Seilpendel, 2m Artikelnummer 6342.07.01 Nur in weiß lieferbar

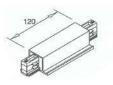




3 Phasen-Einbau-Stromschienen

3-Phasen-Flügel-Einbaustromschiene (440V 16A CL1), Einbauöffnung 37mm

Einspeisung Artikelnummer 6242.28.**


Artikelnummer

6242.29.* *

links

22-5-02.020

rechts

Zentral-Einspeisung Artikelnummer 6242.26.**

Abdeckung für Stromschiene Artikelnummer 6342.34.**

Abhängeklammer Artikelnummer 6242.08.00

6242.01. <mark>01</mark>	1m	weiß	
6242.02. <mark>01</mark>	2m	weiß	
6242.03. <mark>01</mark>	3m	weiß	
6242.04.01	4m	weiß	

Artikelnummer Länge Farbe

**

01= weiß 02= silber 03= schwarz

easyClick Leuchtenkit für 3-Phasen Stromschiene

monos LED Leuchten-Kit easyClick Stromschiene, Phasen bestehend aus Stromschienenadapter weiß mit Treiber, eingebauter Fassung und beigelegter Gegenraste weiß mit Verriegelung für 3-Phasenstromschiene, zur mechanischen und elektrotechnischen Aufnahme von quickLine Einsätzen sowie einem passenden quickLine Einsatz B: 37mm x H: 13mm, CRI>80, L70 bei 50.000h, Lichtfartoleranz MacAdam <3,5 (<3,5 SCDM), für Umgebungstemperaturen von - 30° bis + 45°, **IP20**, zur werkzeuglosen Montage in der Monos 3-Phasen Stromschiene (Klick- in Montage).

EinLeuchtenkit besteht aus 3 Teilen:

1. Stromschienenadapter

2. Gegenraste mit Verriegelung für Stromschiene

				Asym.	Asym
ichtfarbe	Watt	105°	95/40°	2 x 20°	20°
2 = 4000K	14W	1850lm	1880lm	1910lm	1710lm
*2 = 4000K	28W	3650lm	3720lm	3790lm	3400lm

LED Leuchtenkit symmetrisch 14W - 350mA - L: 565mm Artikelnummer Ausstrahlwinkel

Altikelliullillel	Ausstraniwinker
9334.001.01.*	105°
9334.001.04.*	95°
9334.001.07.*	40°

28W - 700mA - L: 1166mm Artikelnummer Ausstrahlwinkel

9334.001.02.*	105°
9334.001.05.*	95°
9334.001.08.*	40°

40W - 1050mA - L: 1466mm Artikelnummer Ausstrahlwinkel

,	, taooti aiiii wiiitoi
9334.001.03.*	105°
9334.001.06.*	95°
9334.001.09.*	40°

Beidseitig

LED Leuchtenkit asymmetrisch 14W - 350mA - L: 565mm Artikelnummer Ausstrahlwinkel

Artikelnummer	Ausstrahlwinkel
9334.001.10.*	Rechts 20°
9334.001.13.*	Links 20°
9334.001.16.*	Beidseitig 2 x 20°

20° rechts

28W - 700mA - L: 1166mm Artikelnummer Ausstrahlwinkel

9334.001.11.*	Rechts 20°
9334.001.14.*	Links 20°
9334.001.17.*	Beidseitig 2 x 20°

40W - 1050mA - L: 1466mm Artikelnummer Ausstrahlwinkel

, a cincomanimio	/ tabbti ai ii Wii iitoi
9334.001.12.*	Rechts 20°
9334.001.15.*	Links 20°
9334.001.18.*	Beidseitig 2 x 20°

Ausstattungsvarianten:

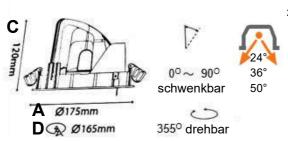
Lichtfarben: 3000K, 4000K, 6500K

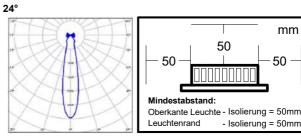
Treiber ON/OFF

Farbwiedergabe CRI>80

Notlichtakku: Nein

Datenblatt: www.monos.de/D24.008REV00





rotun - Einbaurichtstrahler Ra>90

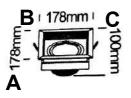
monos LED Einbauleuchte rotun, als Richtstrahler 90° schwenkbar, 355° drehbar, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau oder Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium, Ausstrahlwinkel 24°, 36°,50°, werkzeuglos wechselbar, inklusive Markentreiber.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik / >°	Farbe	A I	в С	D	IP
075.0001.0170	500mA-DALI	20	1939	4000	90	24	Weiss	175	120	165	20
075.0001.0171	500mA-DALI	20	1939	4000	90	36	Weiss	175	120	165	20
075.0001.0172	500mA-DALI	20	1939	4000	90	50	Weiss	175	120	165	20
075.0001.0188	700mA-DALI	30	2590	4000	90	24	Weiss	175	120	165	20
075.0001.0189	700mA-DALI	30	2590	4000	90	36	Weiss	175	120	165	20
075.0001.0190	700mA-DALI	30	2590	4000	90	50	Weiss	175	120	165	20
075.0001.1152	800mA-DALI	35	2874	4000	90	24	Weiss	175	120	165	20
075.0001.0206	800mA-DALI	35	2874	4000	90	36	Weiss	175	120	165	20
075.0001.0207	800mA-DALI	35	2874	4000	90	50	Weiss	175	120	165	20

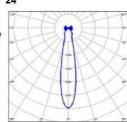
Ausstattungsvarianten:

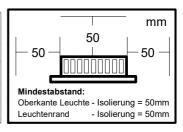
Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/21.020DREV00



exibat single - Einbaurichtstrahler Ra>90


monos LED Einbauleuchte exibat single budget, Bauform quadratisch, CRI>90-below BBL, mit einem kardanisch gelagerten Lichteinsatz 20° schwenkbar, 355° drehbar, umlaufender zurück versetzter Schattenrahmen zur Erhöhung der Blendschutzeigenschaft, Gehäuse aus Aluminium, Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau oder Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium, Ausstrahlwinkel 15°, 24°, 36°, 50°.



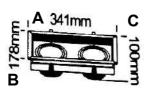
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik / >°	Farbe	Α	В	С	D	Е	IP
075.0001.0298	500mA-DALI	20	2058	4000	90	15	Weiss	178	178	100	165	165	20
075.0001.0299	500mA-DALI	20	2058	4000	90	24	Weiss	178	178	100	165	165	20
075.0001.0300	500mA-DALI	20	2058	4000	90	36	Weiss	178	178	100	165	165	20
075.0001.0301	500mA-DALI	20	2058	4000	90	50	Weiss	178	178	100	165	165	20
075.0001.0322	700mA-DALI	30	2751	4000	90	15	Weiss	178	178	100	165	165	20
075.0001.0323	700mA-DALI	30	2751	4000	90	24	Weiss	178	178	100	165	165	20
075.0001.0324	700mA-DALI	30	2751	4000	90	36	Weiss	178	178	100	165	165	20
075.0001.0325	700mA-DALI	30	2751	4000	90	50	Weiss	178	178	100	165	165	20
075.0001.0346	800mA-DALI	35	3054	4000	90	15	Weiss	178	178	100	165	165	20
075.0001.0347	800mA-DALI	35	3034	4000	90	24	Weiss	178	178	100	165	165	20
075.0001.0348	800mA-DALI	35	3054	4000	90	36	Weiss	178	178	100	165	165	20
075.0001.0349	800mA-DALI	35	3034	4000	90	50	Weiss	178	178	100	165	165	20

Ausstattungsvarianten:

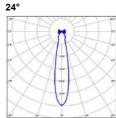
Datenblatt

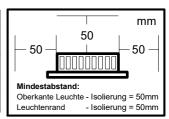
Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/21.021DREV00



Exibat duo - Einbaurichtstrahler Ra>90


monos LED Einbauleuchte exibat duo, Bauform quadratisch, CRI>90-below BBL, mit zwei kardanisch gelagerten Lichteinsätzen 20° schwenkbar, 355° drehbar, umlaufender zurück versetzter Schattenrahmen zur Erhöhung der Blendschutzeigenschaft, Gehäuse aus Aluminium Druckguss pulverbeschichtet in Farbe Weiss, Silbergrau oder Schwarz, facettierter Hochleistungs-Reflektor aus 99,8% Reinstaluminium.



Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik / >°	Farbe	Α	В	С	D	Е
075.0001.0430	2x500mA-DALI	2x20	2x1925	3000	90	15	Weiss	341	178	100	325	165
075.0001.0431	2x500mA-DALI	2x20	2x1925	3000	90	24	Weiss	341	178	100	325	165
075.0001.0432	2x500mA-DALI	2x20	2x1925	3000	90	36	Weiss	341	178	100	325	165
075.0001.0433	2x500mA-DALI	2x20	2x1925	3000	90	50	Weiss	341	178	100	325	165
075.0001.0466	2x700mA-DALI	2x30	2x2751	4000	90	15	Weiss	341	178	100	325	165
075.0001.0467	2x700mA-DALI	2x30	2x2751	4000	90	24	Weiss	341	178	100	325	165
075.0001.0468	2x700mA-DALI	2x30	2x2751	4000	90	36	Weiss	341	178	100	325	165
075.0001.0469	2x700mA-DALI	2x30	2x2751	4000	90	50	Weiss	341	178	100	325	165
075.0001.0490	2x800mA-DALI	2x35	2x3054	4000	90	15	Weiss	341	178	100	325	165
075.0001.0491	2x800mA-DALI	2x35	2x3054	4000	90	24	Weiss	341	178	100	325	165
075.0001.0492	2x800mA-DALI	2x35	2x3054	4000	90	36	Weiss	341	178	100	325	165
075.0001.0493	2x800mA-DALI	2x35	2x3054	4000	90	50	Weiss	341	178	100	325	165

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/21.022DREV00

pendula - Pendelleuchte

20W 500mA CRI>80 ArtikeInummer ✓ CCT8375.019.01.* 36° 3000K

30W 700mA CRI>80 Artikelnummer CCT8375.019.02.* 36° 3000K

Monos **pendula** LED Pendelleuchte, Gehäuse Aluminium pulverbeschichtet in Farbe schwarz/weiß oder schwarz, D: 125mm x H: 150mm, facettierter Hochleistungsreflektor aus 99,80% Reinstaluminium, Ausstrahlwinkel 36°, CRI>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), inkl. Deckenbaldachin und transparenter Zuleitung L: 1000mm

Artikelnummer 8375.019.01.1 Vorschaltgerät 3 EVG

 500mA
 700mA

 Lichtfarbe
 20W
 30W

 4000K
 2243lm
 3182lm

Nicht in DALI verfügbar

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.009REV00

linear flex IP20

monos Linear Flex mit 150 x SMD Chips, mit selbstklebender Rückseite, dimmbar, IP20 Verbrauch pro 500cm Einheit , teilbar in 100mm Stücke, lötfrei Montage durch Steckverbindung, Maximale Länge pro Anschluss 10 Meter (2 Rollen) Austrahlwinkel 120°, SK3, inklusive Zubehör: 5 x Einspeisungsverbindung, 1x Direktverbinder

Zubehör für linear flex

Artikelnummer

1015.015.01	Einspeisungsverbinder
1015.016.01	Direktverbinder
1015.006.02	Repeater
1015.022.01	KNX Aktor

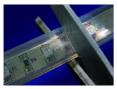
Monos LED Netzgerät, 12V, **IP66** Primärseite mit 1 m Anschlusskabel und Netzstecker

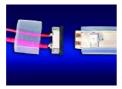
Artikelnummer	Watt	L/B	/ H	
1015.001.02	30	220 x	30 x	20mm
1015.002.02	60	162,5 x 4	42,5 x	32mm
1015.003.02	120	240 x	70 x	44mm
1015.004.02	150	220 x	68 x	39mm
1015.015.02	264	225 x	90 x 4	43.8mm

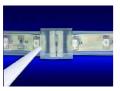
Datenblatt

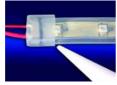
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.011REV00








linear flex IP68

Burger King, Ahaus

Artikelnummer

1015.031.01 Funkempfänger

1015.032.01 Einbau - Funkdimmer

Datenblatt

monos linear flex Outdoor mit 300 x SMD Chips, dimmbar, IP68, LED's in Silikon vergossen, Verbrauch pro 500 cm Einheit 24W, teilbar in 50mm Stücke, lötfreie Montage durch Steckverbindung, Maximale Länge pro Anschluss 10 Meter (2 Rollen) Ausstrahlwinkel 120°, SK3, inklusive Zubehör:

5 x Einspeisungsverbindung, 30 x Befestigungshalter, 2 x Silikon Einspeisungskappe , 2 x Endkappen, 1 x Silikongel-Tube, L: 5000mm x 11mm x 4mm

Artikelnummer	Länge	Lichtfarbe
1015.001.01	5000mm	rot
1015.002.01	5000mm	gelb
1015.003.01	5000mm	blau
1015.004.01	5000mm	grün
1015.005.01	5000mm	warmweiß

Zubehör für linear flex

Artikelnummer

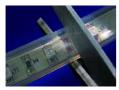
1015.007.01	Einspeisungsverbinder
1015.008.01	Direktverbinder
1015.009.01	Befestigungsclip
1015.010.01	Silikon- Einspeisungskappe
1015.011.01	Silikon- Verbindungsschlauch
1015.020.01	Tube Silikon- Gel

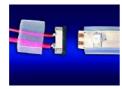
Monos LED Netzgerät, 12V, IP66 Primärseite mit 1 m Anschlusskabel und Netzstecker

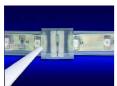
Artikelnummer	Watt	L/B/H
1015.001.02	30	220 x 30 x 20mm
1015.002.02	58	176 x 68 x 39mm
1015.003.02	100	240 x 70 x 44mm
1015.004.02	150	236 x 127 x 58mm
1015.005.02	300	310 x 132 x 61mm

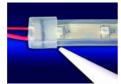
Ausstattungsvarianten:

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein
Datenblatt: www.mon	os.de/D24.012REV00








linear flex RGB IP68

Monos LED Netzgerät, 12V, IP66 Primärseite mit 1 m Anschlusskabel und Netzstecker

Artikelnummer	Watt	L/B/H
1015.001.02	30	220 x 30 x 20mm
1015.002.02	58	176 x 68 x 39mm
1015.003.02	100	240 x 70 x 44mm
1015.004.02	150	236 x 127 x 58mm
1015.005.02	300	310 x 132 x 61mm

monos linear flex RGB Outdoor mit 150 x SMD Chips, Lichtfarbe RGB, dimmbar, IP68, LED's in in Silikon vergossen, Verbrauch pro 500 cm Einheit 36W, teilbar in 100mm Stücke, lötfrei Montage durch Steckverbindung, Maximale Länge pro Anschluss 10 Meter (2 Rollen) Ausstrahlwinkel 120°, SK3, inklusive Zubehör: 5 x Einspeisungsverbindung, 30 x Befestigungshalter, 2 x Sili-kon Einspeisungskappen, 2 x Endkappen, 1 x Silikon-Gel-Tube, L: 5000mm x 11mm x 4mm

Artikelnummer	Länge	Lichtfarbe
1015.013.01	5000mm	RGB

Monos **linear flex Outdoor double** mit **300** x SMD Chips, Lichtfarbe RGB, dimmbar, **IP68**, LED's in in Silikon vergossen, Verbrauch pro 500cm Einheit 72W, teilbar in 50mm Stücke, lötfreie Montage durch Steckverbindung, Maximale Länge pro Anschluss 8 Meter (2 Rollen) Austrahlwinkel 120°, SK3, inklusive Zubeh.

Artikelnummer Länge Lichtfarbe 1015.014.01 5000mm RGB

Zubehör für linear flex RGB

Artikelnummer

Altikelliullill	ICI
1015.015.01	Einspeisungsverbinder
1015.016.01	Direktverbinder
1015.017.01	Befestigungsclip
1015.018.01	Silikon- Einspeisungskappe
1015.019.01	Silikon- Verbindungsschlauch
1015.020.01	Silikongel Tube
1015.006.02	LED RGBW-Controllerset
1015.007.02	Repeater

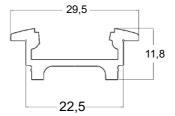
Ausstattungsvarianten:

1015.022.01 KNX Aktor

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.013REV00

Aluminiumprofile für LED


Aluminiumprofil für LED, L: 2000mm, B: 23mm, H: 11mm

Artikelnummer Bezeichnung 1015 025 01 Aluminiumprofil

1015.025.01	Aluminiumprofil
1015.026.01	Profilabdeckung,
	matt, L: 2000mm
1015.027.01	Montageklammer
1015.028.01	Endkappe mit
	Einspeisung
1015.029.01	Endkappe

Aluminiumprofil für LED, Einbau L: 2000mm, B: 22,5mm, H: 11,8mm

Artikelnummer Bezeichnung

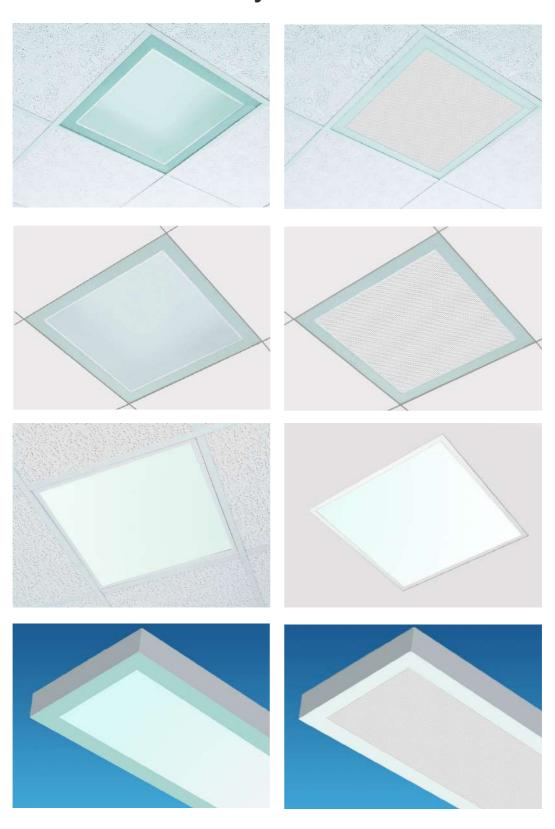
1015.050.01	Aluminiumprofil
1015.026.01	Profilabdeckung,
	matt, L: 2000mm
1015.027.01	Montageklammer
1015.028.01	Endkappe mit
	Einspeisung
1015.029.01	Endkappe

Aluminiumprofil 45° für LED, L: 2000mm, B: 21,5mm, H: 21,5mm

Artikelnummer Bezeichnung

1015.045.01	Aluminiumprofil, 45°
1015.026.01	Profilabdeckung,
	matt, L: 2000mm
1015.027.01	Montageklammer
1015.046.01	Endkappe mit
	Einspeisung
1015.047.01	Endkappe

Ausstattungsvarianten:


Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.014REV00

Reinraumleuchten easy clean

easy clean - Reinraum- Einbauleuchte

monos LED Reinraum-Einbauleuchte easy reinraumzertifiziert gemäß EN ISO IP65 14644-1 Schutzart allseitia. Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, als Einbauleuchte für M:625 Decken mit sichtbarem Profil sowie für geschnittene Deckenöffnungen, Gehäuse aus Stahlblech pulverbeschichtet in Farbe Weiss, Leuchtenabdeckung aus Einscheiben-Sicherheitsglas zusätzlicher, innenliegender Scheibe, UGR<22, photobiologische Risikogruppe gemäß EN-62471 RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR	Α	В	С	D	Е	Kg	Farbe
010.0001.0722	DALI	39	4900	4000	80	ESG+Opal	<22	620	620	90	605	605	11	9003
010.0001.0725	DALI	54	6550	4000	80	ESG+Opal	<22	620	620	90	605	605	11	9003
010.0001.0728	DALI	39	4750	4000	80	ESG+Opal	<22	1245	310	90	1230	295	11	9003
010.0001.0731	DALI	54	6300	4000	80	ESG+Opal	<22	1245	310	90	1230	295	11	9003
010.0001.0734	DALI	113	13800	4000	80	ESG+Opal	<22	1245	620	90	1230	602	19	9003
010.0001.0737	DALI	49	5900	4000	80	ESG+Opal	<22	1545	310	90	1530	295	14	9003
010.0001.0740	DALI	99	11600	4000	80	ESG+Opal	<22	1545	310	90	1530	295	14	9003

Ausstattungsvarianten:

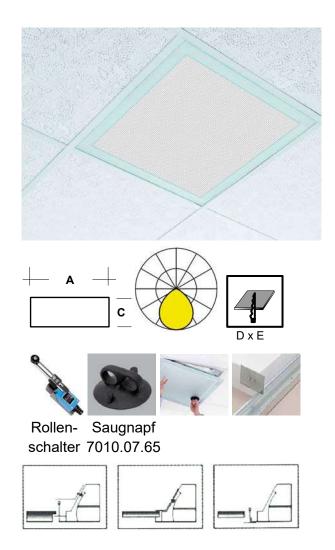
Datenblatt

Lichtfarben: 3000K, 4000K, 6500K

Treiber ON/OFF DALI

Farbwiedergabe CRI>80, CRI>90

Notlichtakku: Ja


Datenblatt: www.monos.de/D24.015REV00
Optionen: www.monos.de/D24.063REV00

easy clean - Reinraum- Einbauleuchte

monos LED Reinraum-Einbauleuchte easy reinraumzertifiziert gemäß EN ISO 14644-1 - Schutzart IP65 allseitig, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, als Einbauleuchte für M:625 Decken sichtbarem Profil sowie für geschnittene Deckenöffnungen, Gehäuse aus Stahlblech pulverbeschichtet in Farbe Weiss, Leuchtenabdeckung aus Einscheiben-Sicherheitsglas und zusätzlicher, innenliegender Mikroprisma, UGR<19, photobiologische Risikogruppe gemäß EN-62471 RG0. serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

0001.0394

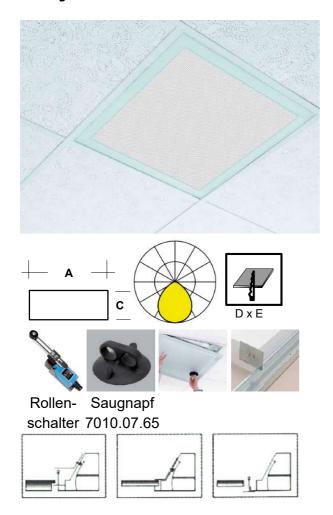
Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR	Α	В	С	D	E	Kg	Farbe
010.0001.0764	DALI	39	4753	4000	80	ESG+Mikro	<19	620	620	90	605	605	11	9003
010.0001.0767	DALI	54	6354	4000	80	ESG+Mikro	<19	620	620	90	605	605	11	9003
010.0001.0770	DALI	39	4608	4000	80	ESG+Mikro	<19	1245	310	90	1230	295	11	9003
010.0001.0773	DALI	54	6111	4000	80	ESG+Mikro	<19	1245	310	90	1230	295	11	9003
010.0001.0776	DALI	113	13386	4000	80	ESG+Mikro	<19	1245	620	90	1230	605	11	9003
010.0001.0779	DALI	49	5723	4000	80	ESG+Mikro	<19	1545	310	90	1530	295	14	9003
010.0001.0782	DALI	99	11252	4000	80	ESG+Mikro	<19	1545	310	90	1530	295	14	9003

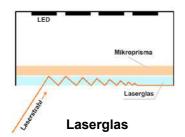
Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja


Datenblatt: www.monos.de/D24.053REV00
Optionen: www.monos.de/D24.063REV00

easy clean - Reinraum- Einbauleuchte


Monos easy clean LED Reinraum-Einbauleuchte, reinraumzertifiziert gemäß EN ISO 14644-1 - Schutzart IP65 allseitig, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, als Decken Einbauleuchte für M:625 sichtbarem Profil sowie für geschnittene Deckenöffnungen, Gehäuse aus Stahlblech pulverbeschichtet in Farbe Weiss, Leuchtenabdeckung aus Einscheiben-Sicherheits-Laserglas und zusätzlicher, innenliegender Mikroprisma, photobiologische UGR<19, Risikogruppe gemäß EN-62471 RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

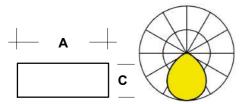
Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR	Α	В	С	D	Е	Kg	Farbe
010.0001.0806	DALI	39	4515	4000	80	Laser+Mikro	<19	620	620	90	605	605	11	9003
010.0001.0809	DALI	54	6036	4000	80	Laser+Mikro	<19	620	620	90	605	605	11	9003
010.0001.0812	DALI	39	4377	4000	80	Laser+Mikro	<19	1245	310	90	1230	295	11	9003
010.0001.0815	DALI	54	5805	4000	80	Laser+Mikro	<19	1245	310	90	1230	295	11	9003
010.0001.0818	DALI	113	12717	4000	80	Laser+Mikro	<19	1245	620	90	1230	605	19	9003
010.0001.0821	DALI	49	5437	4000	80	Laser+Mikro	<19	1545	310	90	1530	295	14	9003
010.0001.0824	DALI	99	10689	4000	80	Laser+Mikro	<19	1545	310	90	1530	295	14	9003

Datenblatt

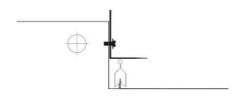
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.054REV00
Optionen: www.monos.de/D24.063REV00



easy clean - LED Reinraum- Einbauleuchte für Metalldecken M:625



schalter

Monos easy clean LED Reinraum-Einbauleuchte, reinraumzertifiziert gemäß EN ISO 14644-1 - Schutzart IP65 allseitig, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, als Einbauleuchte für M:625 Metalldecken, Gehäuse aus Stahlblech pulverbeschichtet in Farbe Weiss. Leuchtenabdeckung Einscheiben-Sicherheitsglas und zusätzlicher, innenliegender opaler Scheibe. UGR<22, photobiologische Risikogruppe EN-62471 gemäß RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR	Α	В	С	Kg	Farbe
010.0001.0839	DALI	39	4900	4000	80	ESG+Opal	<22	623	623	90	11	9003
010.0001.0842	DALI	54	6550	4000	80	ESG+Opal	<22	623	623	90	11	9003
010.0001.0845	DALI	39	4750	4000	80	ESG+Opal	<22	1247	312	90	11	9003
010.0001.0848	DALI	54	6300	4000	80	ESG+Opal	<22	1247	312	90	11	9003

Datenblatt

Ausstattungsvarianten:

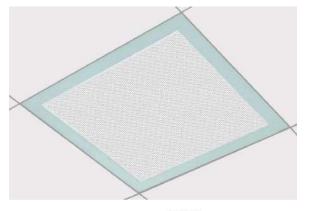
Notlichtakku:	Ja
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF DALI
Lichtfarben:	3000K, 4000K, 6500K

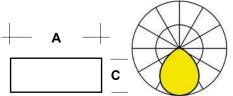
Datenblatt: www.monos.de/D24.016REV00 www.monos.de/D24.063REV00 Optionen:

Metalldecken,

Monos easy clean LED Reinraum-Einbauleuchte, reinraumzertifiziert gemäß EN ISO 14644-1 - Schutzart IP65 allseitig, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, als

Gehäuse aus Stahlblech pulverbeschichtet in


Einscheiben-Sicherheitsglas und zusätzlicher, innenliegender Mikroprisma, UGR<19, photobiologische Risikogruppe gemäß EN-62471 RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch


M:625

Leuchtenabdeckung

für

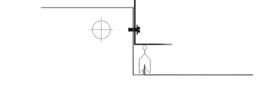
easy clean - LED Reinraum- Einbauleuchte für Metalldecken M:625

Rollen-

schalter

Saugnapf

7010.07.65


0001.0394

bestellen).

Einbauleuchte

Weiss,

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

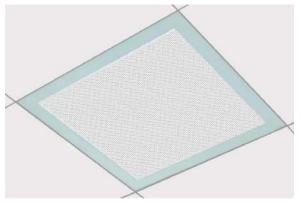
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR	Α	В	С	Kg	Farbe	IP
010.0001.0863	DALI	39	4753	4000	80	ESG+Mikro	<19	623	623	90	11	9003	65
010.0001.0866	DALI	54	6354	4000	80	ESG+Mikro	<19	623	623	90	11	9003	65
010.0001.0869	DALI	39	4608	4000	80	ESG+Mikro	<19	1247	312	90	11	9003	65
010.0001.0872	DALI	54	6111	4000	80	ESG+Mikro	<19	1247	312	90	11	9003	65

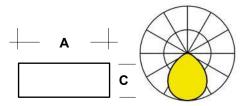
Datenblatt

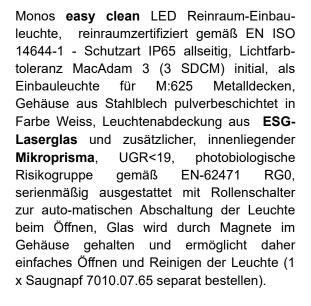
Ausstattungsvarianten:

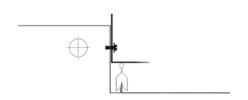
Lichtfarben: 3000K, 4000K, 6500K Treiber ON/OFF DALI Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Ja

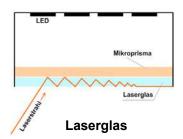
Datenblatt: www.monos.de/D24.055REV00 www.monos.de/D24.063REV00 Optionen:






easy clean - LED Reinraum- Einbauleuchte für Metalldecken M:625





0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

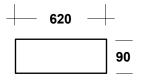
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR	Α	В	С	Kg	Farbe
010.0001.0887	DALI	39	4515	4000	80	Laser+Mikro	<19	623	623	90	11	9003
010.0001.0890	DALI	54	6036	4000	80	Laser+Mikro	<19	623	623	90	11	9003
010.0001.0893	DALI	39	4377	4000	80	Laser+Mikro	<19	1247	312	90	11	9003
010.0001.0896	DALI	54	5805	4000	80	Laser+Mikro	<19	1247	312	90	11	9003

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.056REV00

Optionen: <u>www.monos.de/D24.063REV00</u>

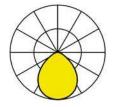

ben eip - Reinraum- Einbauleuchte

Farbwiedergabeindex R>80, IP65, Sicherheitsglas

monos LED Reinraum- Einbauleuchte ben eip, IP65, CRI >80, Lichtfarbtoleranz MacAdam 3, EVG, als Einbauleuchte für M:625 Decken mit sichtbarem T-Profil sowie für den Einbau in geschnittene Deckenöffnungen, Einscheiben- Sicherheitsglas mattiert, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten. Gehäuse aus Stahlblech.

Maße 32W = L: 620mm x B: 620mm x H:90mm Maße 53W = L: 620mm x B: 620mm x H:90mm

605x605mm


Notlicht

Artikelnummer

7010.05.01 Notlicht Akku LED 1h

Artikelnummer W 2310.301.37.* 32W 2310.302.37.* 53W

Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

Artikelnummer 2310.301.37.1 Vorschaltgerät 3 EVG 5 Dali

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

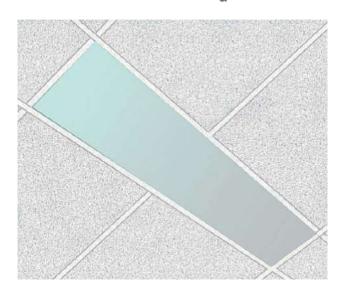
	Lichtfarbe	32W	53W
*	2= 4000K	4185lm	6675lm

Datenblatt

Ausstattungsvarianten:

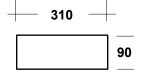
Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.018REV00

Optionen: <u>www.monos.de/D24.063REV00</u>



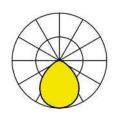
ben eip Reinraum- Langfeld- Einbauleuchte

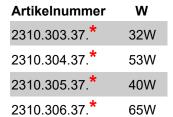
Farbwiedergabeindex R >80, IP65, Sicherheitsglas


monos LED Reinraum- Langfeld Einbauleuchte ben eip, IP65, CRI >80, Lichtfarbtoleranz MacAdam 3, EVG, als Einbauleuchte für M:625 Decken mit sichtbarem T-Profil sowie für den Einbau in geschnittene Deckenöffnungen, Einscheiben- Sicherheitsglas mattiert, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten. Gehäuse aus Stahlblech.

Maße 32W = L: 1245mm x B: 310mm x H:90mm

Maße 53W = L: 1245mm x B: 310mm x H:90mm

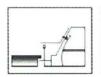

Maße 40W = L: 1545mm x B: 310mm x H:90mm


Maße 65W = L: 1545mm x B: 310mm x H:90mm

295x1230mm 295x1530mm

Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

Artikelnummer 2310.303.37.1 Vorschaltgerät 3 EVG 5 Dali



0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

Notlicht Artikelnummer

7010.05.01 Notlicht Akku LED 1h

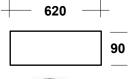
Lichtfarbe	32W	40W	53W	65W
* 1= 3000K	3590lm	4270lm	5724lm	7095lm
* 2= 4000K	3780lm	4495lm	6025lm	7470lm
* 3= 6500K	3780lm	4495lm	6025lm	7470lm

ben eip - LED Reinraum- Einbauleuchte

Farbwiedergabeindex R₃>80, IP65, opal

monos LED Reinraum- Einbauleuchte ben eip, IP65, CRI >80, Lichtfarbtoleranz MacAdam 3, EVG, als Einbauleuchte für M:625 Decken mit sichtbarem T-Profil sowie für den Einbau in geschnittene Deckenöffnungen, Leuchtenabdeckung opal, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten. Gehäuse aus Stahlblech.

Maße 32W = L: 620mm x B: 620mm x H:90mm Maße 53W = L: 620mm x B: 620mm x H:90mm

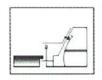


Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

Artikelnummer 2310.301.38.1

Vorschaltgerät
3 EVG
5 Dali

605x605mm


0001.0394

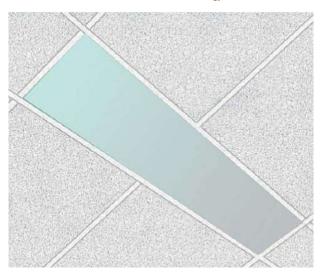
Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

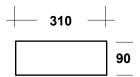
Notlicht

Artikelnummer

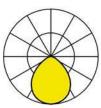
7010.05.01 Notlicht Akku LED 1h

	Lichtfarbe	32W	53W
*	1 = 3000K	3865lm	6185lm
*	2 = 4000K	4100m	6535lm
*	3= 6500K	4100lm	6535lm




ben eip Reinraum- Langfeld- Einbauleuchte

Farbwiedergabeindex R₂>80, IP65, opal


monos Reinraum- Langfeld Einbauleuchte ben eip , IP65, CRI >80, Lichtfarbtoleranz MacAdam 3, EVG, als Einbauleuchte für M:625 Decken mit sichtbarem T-Profil sowie für den Einbau in geschnittene Deckenöffnungen, Leuchtenabdeckung opal, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten. Gehäuse aus Stahlblech.

Maße	32W = L: 1245mm x B: 310mm x H:90mm
Maße	53W = L: 1245mm x B: 310mm x H:90mm
Maße	40W = L: 1545mm x B: 310mm x H:90mm
Maße	65W = L: 1545mm x B: 310mm x H:90mm

295x1230mm 295x1530mm

Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

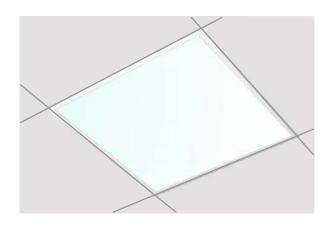
Artikelnummer 2310.303.39.1 Vorschaltgerät - 3 EVG 5 Dali

0001.0394

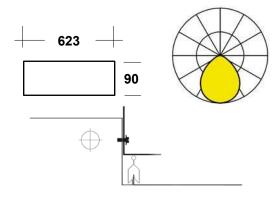
Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

Notlicht Artikelnummer 7010.05.01 Notlicht Akku LED 1h

L	ichtfarbe	32W	40W	53W	65W
* 1	= 3000K	3785lm	4503lm	6037lm	7475m
* 2	= 4000K	3985lm	4740m	6355lm	7870lm
* 3	= 6500K	3985lm	4740lm	6355lm	7870lm



BEN eip Metall - Reinraum Einbauleuchte


für Metalldecken M:625, IP65, Sicherheitsglas

Monos LED Reinraum- Einbauleuchte **Ben eip Metall**, **IP65**, CRI >80, Lichtfarbtoleranz MacAdam 3, als Einbauleuchte für M:625 Metalldecken , **Einscheiben-Sicherheitsglas mattiert**, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten Gehäuse aus Stahlblech.

Maße 32W = L: 623mm x B: 623mm x H:90mm

Maße 53W = L: 623mm x B: 623mm x H:90mm

Notlicht Artikelnummer 7010.05.01 Notlicht Akku LED 1h **Artikelnummer W** 2310.307.42.* 32W 2310.308.42.* 53W

Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

Artikelnummer 2310.307.42.1 Vorschaltgerät 3 EVG 5 Dali

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

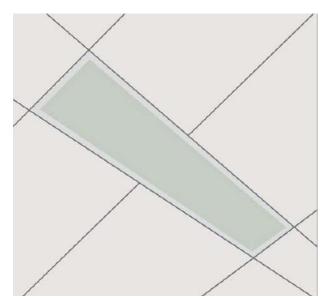
	Lichtfarbe	32W	53W
*	2 = 4000K	4185m	6675lm

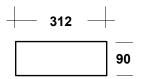
Datenblatt

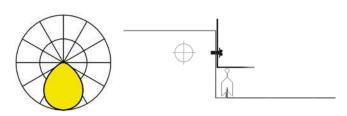
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.020REV00
Optionen: www.monos.de/D24.063REV00




BEN eip Metall - Reinraum Langfeld-Einbauleuchte


für Metalldecken M:625, IP65, Sicherheitsglas

Monos LED Reinraum- Einbau- Langfeldleuchte Ben eip Metall, IP65, CRI >80, Lichtfarbtoleranz MacAdam 3, als Einbauleuchte für M:625 Metalldecken, Einscheiben- Sicherheitsglas mattiert, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten Gehäuse aus Stahlblech.

Maße 32W = L: 1247mm x B: 312mm x H:90mm Maße 53W = L: 1247mm x B: 312mm x H:90mm

Notlicht Artikelnummer 7010.05.01 Notlicht Akku LED 1h Artikelnummer W
2310.309.42.* 32W
2310.310.42.* 53W

Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

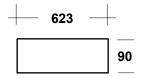
Artikelnummer 2310.309.42.1 Vorschaltgerät 3 EVG 5 Dali

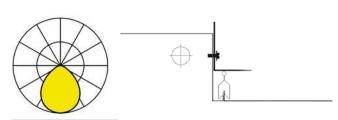
0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

	Lichtfarbe	32W	53W
*	1 = 3000K	3590lm	5723lm
*	2 = 4000K	3780m	6025lm
4	3= 6500K	3780lm	6025lm

BEN eip Metall - Reinraum Einbauleuchte


für Metalldecken M:625, IP65, opal



Monos LED Reinraum- Einbauleuchte **Ben eip Metall**, **IP65**, CRI >80, Lichtfarbtoleranz MacAdam 3, als Einbauleuchte für M:625 Metalldecken , Leuchtenabdeckung **opal**, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten Gehäuse aus Stahlblech.

Maße 32W = L: 623mm x B: 623mm x H:90mm

Maße 53W = L: 623mm x B: 623mm x H:90mm

Notlicht Artikelnummer

7010.05.01 Notlicht Akku LED 1h

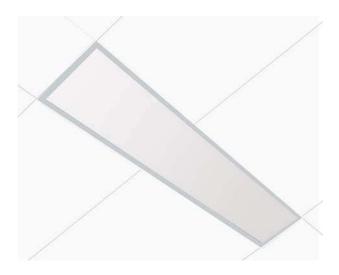
Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

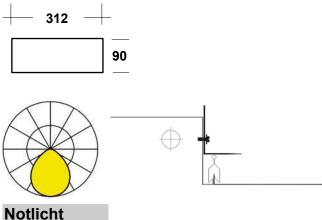
Artikelnummer 2310.307.44.1 Vorschaltgerät 3 EVG 5 Dali

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

	Lichtfarbe	32W	53W
*	1 = 3000K	3865lm	6188lm
*	2 = 4000K	4100m	6535lm
*	3= 6500K	4100lm	6535lm




BEN eip Metall - Reinraum Langfeld-Einbauleuchte

für Metalldecken M:625, IP65, opal

Monos LED Reinraum- Einbau- Langfeldleuchte Ben eip Metall, IP65, CRI >80, Lichtfarbtoleranz MacAdam 3, als Einbauleuchte für M:625 Metalldecken, Leuchtenabdeckung opal, Abdeckung wird durch verdeckte Verschlüsse im Gehäuse gehalten Gehäuse aus Stahlblech.

Maße 32W = L: 1247mm x B: 312mm x H:90mm Maße 53W = L: 1247mm x B: 312mm x H:90mm

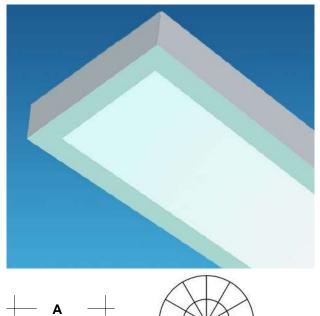
Artikelnummer
7010.05.01 Notlicht Akku LED 1h

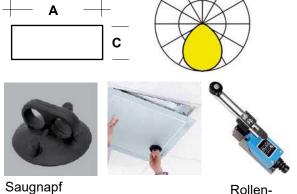
Reinraumzertifiziert gemäß EN ISO 14644-1 für alle Reinraumklassen

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

	Lichtfarbe	32W	53W
*	1 = 3000K	3785lm	6037lm
*	2 = 4000K	3985m	6355lm
*	3= 6500K	3985lm	6355lm




easy clean - Reinraum- Anbauleuchte

monos LED Reinraum-Anbauleuchte easy clean reinraumzertifiziert gemäß EN ISO 14644-1 - Schutzart IP65 allseitig, Lebensdauer L90/B10 <50.000h, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, Gehäuse aus Stahlblech pulverbeschichtet Farbe Weiss. Leuchtenabdeckung Einscheibenaus Sicherheitsglas und zusätzlicher. innen-Scheibe. UGR<22. liegender opaler photobiologische Risikogruppe gemäß EN-62471 RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

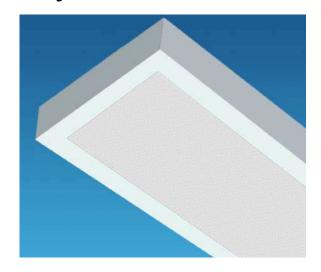
7010.07.65 Schalter

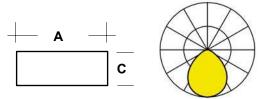
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR	Α	В	С	Kg	Farbe
010.0001.1050	DALI	39	4900	4000	80	ESG+Opal	<22	598	598	90	11	9003
010.0001.1053	DALI	54	6550	4000	80	ESG+Opal	<22	598	598	90	11	9003
010.0001.1056	DALI	39	4750	4000	80	ESG+Opal	<22	1250	350	90	11	9003
010.0001.1059	DALI	54	6300	4000	80	ESG+Opal	<22	1250	350	90	11	9003
010.0001.1062	DALI	49	5900	4000	80	ESG+Opal	<22	1550	350	90	15	9003
010.0001.1065	DALI	99	11600	4000	80	ESG+Opal	<22	1550	350	90	15	9003

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.021REV00

Optionen: <u>www.monos.de/D24.063REV00</u>





easy clean - Reinraum- Anbauleuchte

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

monos LED Reinraum-Anbauleuchte easy reinraumzertifiziert gemäß EN ISO clean. 14644-1 - Schutzart IP65 allseitig, Lebens-dauer L90/B10 <50.000h, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, Gehäuse aus Stahlblech pulverbeschichtet in Farbe Weiss. Leuchtenabdeckung Einscheibenaus Sicherheitsglas und zusätzlicher, und Mikroprisma, innenliegender UGR<19. photobiologische Risikogruppe gemäß EN-62471 RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

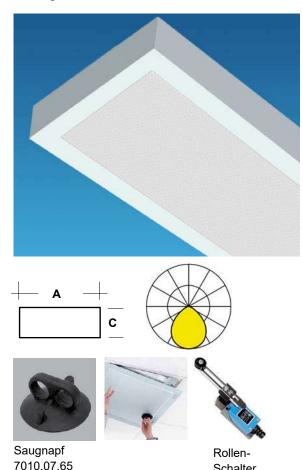
Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR	Α	В	С	Kg	Farbe
010.0001.1086	DALI	39	4753	4000	80	ESG+Mikro	<19	598	598	90	11	9003
010.0001.1089	DALI	54	6354	4000	80	ESG+Mikro	<19	598	598	90	11	9003
010.0001.1092	DALI	39	4608	4000	80	ESG+Mikro	<19	1250	350	90	11	9003
010.0001.1095	DALI	54	6111	4000	80	ESG+Mikro	<19	1250	350	90	11	9003
010.0001.1098	DALI	49	5723	4000	80	ESG+Mikro	<19	1550	350	90	15	9003
010.0001.1101	DALI	99	11252	4000	80	ESG+Mikro	<19	1550	350	90	15	9003

Datenblatt

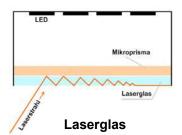
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.022REV00
Optionen: www.monos.de/D24.063REV00



easy clean - LED Reinraum- Anbauleuchte


monos LED Reinraum-Anbauleuchte easy reinraumzertifiziert gemäß EN ISO clean. 14644-1 - Schutzart IP65 allseitig, Lebens-dauer L90/B10 <50.000h, Lichtfarbtoleranz MacAdam 3 (3 SDCM) initial, Gehäuse aus Stahlblech pulverbeschichtet Farbe Weiss. Leuchtenabdeckung aus ESG-Laserglas und zusätzlicher, innenliegender Mikroprisma, UGR<19, photobiologische Risikogruppe gemäß EN-62471 RG0, serienmäßig ausgestattet mit Rollenschalter zur automatischen Abschaltung der Leuchte beim Öffnen, Glas wird durch Magnete im Gehäuse gehalten und ermöglicht daher einfaches Öffnen und Reinigen der Leuchte (1 x Saugnapf 7010.07.65 separat bestellen).

0001.0394

Ausstattung mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR	Α	В	С	Kg	Farbe
010.0001.1122	DALI	39	4515	4000	80	Laser+Mikro	<19	598	598	90	11	9003
010.0001.1125	DALI	54	6036	4000	80	Laser+Mikro	<19	598	598	90	11	9003
010.0001.1128	DALI	39	4377	4000	80	Laser+Mikro	<19	1250	350	90	11	9003
010.0001.1131	DALI	54	5805	4000	80	Laser+Mikro	<19	1250	350	90	11	9003
010.0001.1134	DALI	49	5437	4000	80	Laser+Mikro	<19	1550	350	90	15	9003
010.0001.1137	DALI	99	10689	4000	80	Laser+Mikro	<19	1550	350	90	15	9003

Schalter

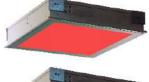
Datenblatt

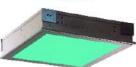
Ausstattungsvarianten:

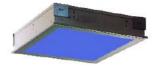
Lichtfarben: 3000K, 4000K, 6500K Treiber ON/OFF DALI Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Ja

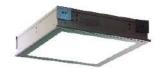
Datenblatt: www.monos.de/D24.024REV00 www.monos.de/D24.063REV00 Optionen:

Ausstattungsvarianten für Reinraumleuchten









Artikelnummer

0001.0394

monos Mehrpreis für Ausstattung einer quadratischen Einbauleuchte M:600 oder M:625 oder Langfeldleuchte L:1245mm x 300mm mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Lichtstrom RGB 800lm, der Anschlußwert der Leuchte erhöht sich durch RGB um 40W. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

ArtikeInummer

0001.0782

monos Mehrpreis für Ausstattung Einbauleuchte M:600 oder M:625 als Langfeldleuchte L:1245mm x 600mm mit RGB-W Technik. 3 RGB Dali Kanäle + 1 Dali Kanal für weißes Licht. Lichtstrom RGB 800lm, der Anschlußwert der Leuchte erhöht sich durch RGB um 60W. Der Lichtstrom der weißen LED entspricht den Angaben der Leuchte.

0001.0784

monos Mehrpreis für Ausführung easy clean in V4A Edelstahl, in den Maßen 595mm x 595mm, 1195mm x 295mm, 1495mm x 292mm, 620mm x 620mm, 1245mm x 310mm, 1545mm x 310mm und 598mm x 598mm, 1198 x 298mm, 623mm x 623mm, 1248mm x 312mm (kein Clip in)

0001.0785

monos Mehrpreis für Ausführung easy clean in V4A Edelstahl, in den Maßen 595mm x 1198mm, 598mm x 1198mm, 1245mm x 620mm, 1248mm x 623mm (kein Clip in).

0001.0786

monos Mehrpreis für Clip-In Ausführung easy clean in V4A Edelstahl, in allen Maßen.

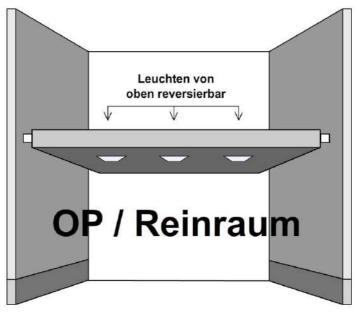
Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.063REV00

Ausstattungsvarianten für Reinraumleuchten

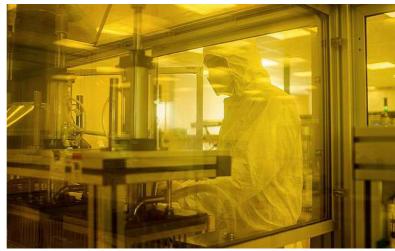
Revision von oben


Artikelnummer

7010.07.04

monos Mehrpreis für Reinraumleuchte easy clean 620mm x 620mm + 310mm x

1245mm in Ausführung Revision von oben


Gelblicht

Artikelnummer

7010.07.42

monos Gelblichtscheibe 1H20 zu Reinraumleuchte 595mm x 595mm und 620mm x 620mm, Transmission bei 520nm <0,38% - bei 450nm <0,02% - bei 400nm <0,04%, als Sandwich eingebaut in die Leuchte.

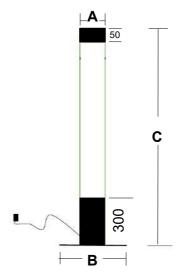
Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.063REV00

Kapitel 4

Steh- und Tischaufsatzleuchten luna

luna bella - LED Stehleuchte


IP20

monos LED Stehleuchte luna bella, CRI>80, L80/B10 - 50.000h, opal satinierter Leuchtenkörper ausgeführt als Zylinder, Sockel aus Aluminium sowie runder Fuß (D: 300mm) aus Stahlblech in RAL 9007 (andere RAL Farben auf Anfrage), schwarze Zuleitung L: 1500mm mit Fußschalter und Schukostecker, obere Abdeckung in Farbe wie Sockel und Fuß, mit roten LEDs oben zur Erzeugung eines dekorativen roten Farbverlaufs im oberen Bereich des Zylinders, Treiber in der Leuchte.

Bezeichnung

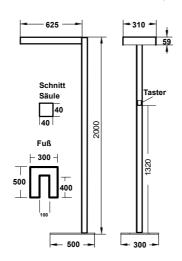
Mehrpreis für Ausstattung von Leuchten mit DALI + **Casambi** Bausteinen. Dimmung per Smartphone oder Tablet über Casambi App.

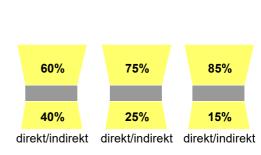
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Α	В	С	Kg
005.0001.3396	EVG	12	970	4000	80	Opal	100	300	800	7,5
005.0001.3397	EVG	16	1323	4000	80	Opal	100	300	800	7,5
005.0001.3398	EVG	22	1852	4000	80	Opal	100	300	800	7,5
005.0001.3405	EVG	21	1746	4000	80	Opal	100	300	1200	8,0
005.0001.3406	EVG	28	2381	4000	80	Opal	100	300	1200	8,0
005.0001.3407	EVG	40	3333	4000	80	Opal	100	300	1200	8,0
005.0001.1508	EVG	28	2662	4000	80	Opal	100	300	1600	9,0
005.0001.1509	EVG	40	3910	4000	80	Opal	100	300	1600	9,0
005.0001.1510	EVG	48	4536	4000	80	Opal	100	300	1600	9,0

Datenblatt

Treiber DALI Casambi

Datenblatt: www.monos.de/D24.031REV00




luna solum Stehleuchte

LED Stehleuchte luna monos solum, Lichtverteilung direkt/indirekt, Systemeffizienz bis 127lm/W, Lichtströme und direkt/indirekt Lichtanteile dimensioniert zur normgerechten Beleuchtung von Bildschirmarbeitsplätzen und deren Umgebung, 4000K, CRI>80, L80/B10 bei 50.000h, UGR<19, Lichtfarbtoleranz MacAdam 3 bzw. 3 SDCM, wahlweise ausgestattet mit 1 oder 2 Schalter/Taster je nach Ausführung: Ein/Ausschalter, Dimm/Double-Dimm-Taster (Double-Dimm-Taster zur separaten Steuerung des direkten/indirekt Lichtanteils), mit Tageslichtund Präsenz Sensorik sowie Dimm/Double-Dimm-Taster oder zusätzlicher Schwarmintelligenz. Kopf in Farbe RAL 9006 strukturiert, Fuß ausgebildet als U-Form in Farbe schwarz, Zuleitung L: 3000mm mit Winkelstecker, Maße: H: 2000mm, Kopf 625mm x 310mm x H:59mm, Fuß 500mm x 300mm, die Auslieferung erfolgt in 3 Teilen (Kopf, Säule, Fuß).

Datenblatt

Datenblatt: www.monos.de/D24.032REV00

luna solum Stehleuchte

40% direkt / 60% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0324	On/Off	88	11000	4000	80	Mikroprisma	19
005.0001.0325	Touch-DIM	88	11000	4000	80	Mikroprisma	19
005.0001.0326	Touch-DIM+Sensor	88	11000	4000	80	Mikroprisma	19
005.0001.0327	Sensorik + Schwarm	88	11000	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 40% direkt / 60% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1953	Double-Touch-Dim	88	11000	4000	80	Mikroprisma	19
005.0001.1954	DTD+Sensor	88	11000	4000	80	Mikroprisma	19
005.0001.1955	DTD+Sensorik+Schwarm	88	11000	4000	80	Mikroprisma	19

25% direkt / 75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0328	On/Off	108	13400	4000	80	Mikroprisma	19
005.0001.0329	Touch-DIM	108	13400	4000	80	Mikroprisma	19
005.0001.0330	Touch-DIM+Sensor	108	13400	4000	80	Mikroprisma	19
005.0001.0331	Sensorik + Schwarm	108	13400	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 25% direkt / 75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1956	Double-Touch-Dim	108	13400	4000	80	Mikroprisma	19
005.0001.1957	DTD+Sensor	108	13400	4000	80	Mikroprisma	19
005.0001.1958	DTD+Sensorik+Schwarm	108	13400	4000	80	Mikroprisma	19

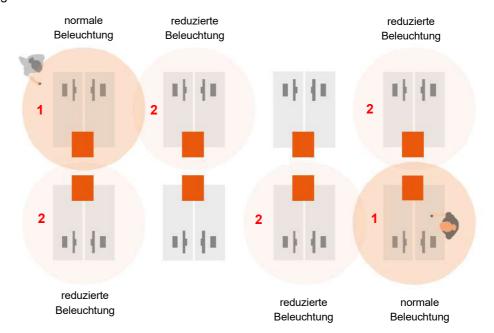
15% direkt / 85% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0332	On/Off	110	14000	4000	80	Mikroprisma	19
005.0001.0333	Touch-DIM	110	14000	4000	80	Mikroprisma	19
005.0001.0334	Touch-DIM+Sensor	110	14000	4000	80	Mikroprisma	19
005.0001.0335	Sensorik + Schwarm	110	14000	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 15% direkt / 85% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1959	Double-Touch-Dim	110	14000	4000	80	Mikroprisma	19
005.0001.1960	DTD+Sensor	110	14000	4000	80	Mikroprisma	19
005.0001.1961	DTD+Sensorik+Schwarm	110	14000	4000	80	Mikroprisma	19

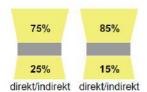
luna solum Stehleuchte

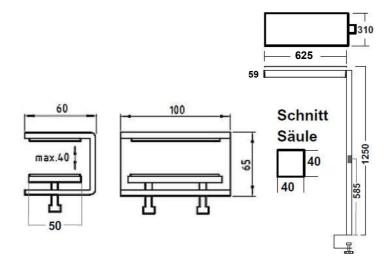

Schwarm-Technik:

- Reichweite 50m
- 7 Zonen x 7 Gruppenadressen
- Auch überlappende Gruppen möglich
- Automatische Synchronisierung sensorgesteuerter Leuchten

Schwarmintelligenz:

Am besetzten Arbeitsplatz regelt der **Swarm Adapter** die Leuchte auf die normale Beleuchtungsstärke (1). Die mit ihr drahtlos verbundenen Leuchten (2) schalten sich automatisch dazu und gestalten eine angenehme Grundbeleuchtung in der Umgebung. So werden Lichtinseln vermieden und eine angenehme und produktive Arbeitsatmosphäre geschaffen





luna mensa Tischaufsatzleuchte

monos LED Tischaufsatzleuchte luna mensa, direkt/indirekt, EVG, Systemeffizienz bis 127lm/W, 4000K, CRI>80, L80/B10 bei 50.000h, UGR<19, Lichtfarbtoleranz MacAdam 3 bzw. 3 SDCM, wahlweise ausgestattet mit Ein/Ausschalter, Dimm-Taster, mit Tageslicht- und Präsenz Sensorik sowie Dimm-Taster oder zusätzlicher Schwarmintelligenz. Bedienungselement in der Säule. Säule und Kopf in Farbe RAL 9006 strukturiert, mit Tischklemme für Tischplatten bis 40mm Stärke, Zuleitung L: 3000mm mit Winkelstecker, Maße: H: 1250mm, Kopf 625mm x 310mm x H:59mm, die Auslieferung erfolgt in 2 Teilen (Kopf, Säule mit Tischklemme).

Ideal für höhenverstellbare Tische

Datenblatt: www.monos.de/D24.033REV00

luna mensa Tischaufsatzleuchte

25% direkt / 75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0550	ON/OFF	77	9200	4000	80	Mikroprisma	19
005.0001.0551	Touch-dim.	77	9200	4000	80	Mikroprisma	19
005.0001.0552	Touch-dim.+Sensorik	77	9200	4000	80	Mikroprisma	19
005.0001.0553	Sensorik + Schwarm	77	9200	4000	80	Mikroprisma	19
005.0001.0554	ON/OFF	88	11000	4000	80	Mikroprisma	19
005.0001.0555	Touch-dim.	88	11000	4000	80	Mikroprisma	19
005.0001.0556	Touch-dim.+Sensorik	88	11000	4000	80	Mikroprisma	19
005.0001.0557	Sensorik + Schwarm	88	11000	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 25% direkt / 75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1974	Double-Touch-Dim	77	9200	4000	80	Mikroprisma	19
005.0001.1975	DTD+Sensor	77	9200	4000	80	Mikroprisma	19
005.0001.1976	DTD+Sensorik+Schwarm	77	9200	4000	80	Mikroprisma	19
005.0001.1977	Double-Touch-Dim	88	11000	4000	80	Mikroprisma	19
005.0001.1978	DTD+Sensor	88	11000	4000	80	Mikroprisma	19
005.0001.1979	DTD+Sensorik+Schwarm	88	11000	4000	80	Mikroprisma	19

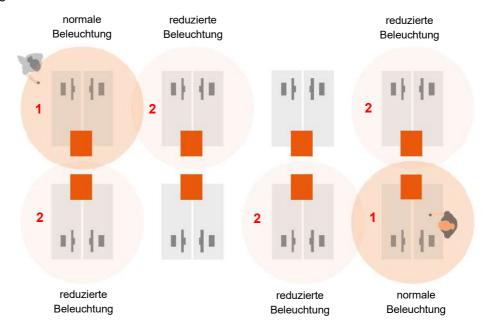
15% direkt / 85% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0558	ON/OFF	108	13400	4000	80	Mikroprisma	19
005.0001.0559	Touch-dim.	108	13400	4000	80	Mikroprisma	19
005.0001.0560	Touch-dim.+Sensorik	108	13400	4000	80	Mikroprisma	19
005.0001.0561	Sensorik + Schwarm	108	13400	4000	80	Mikroprisma	19
005.0001.0562	ON/OFF	110	14000	4000	80	Mikroprisma	19
005.0001.0563	Touch-dim.	110	14000	4000	80	Mikroprisma	19
005.0001.0564	Touch-dim.+Sensorik	110	14000	4000	80	Mikroprisma	19
005.0001.0565	Sensorik + Schwarm	110	14000	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 15% direkt / 85% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1980	Double-Touch-Dim	108	13400	4000	80	Mikroprisma	19
005.0001.1981	DTD+Sensor	108	13400	4000	80	Mikroprisma	19
005.0001.1982	DTD+Sensorik+Schwarm	108	13400	4000	80	Mikroprisma	19
005.0001.1983	Double-Touch-Dim	110	14000	4000	80	Mikroprisma	19
005.0001.1984	DTD+Sensor	110	14000	4000	80	Mikroprisma	19
005.0001.1985	DTD+Sensorik+Schwarm	110	14000	4000	80	Mikroprisma	19

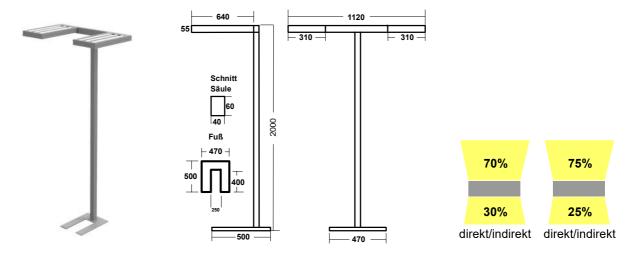
luna mensa Tischaufsatzleuchte


Schwarm-Technik:

- Reichweite 50m
- 7 Zonen x 7 Gruppenadressen
- Auch überlappende Gruppen möglich
- Automatische Synchronisierung sensorgesteuerter Leuchten

Schwarmintelligenz:

Am besetzten Arbeitsplatz regelt der **Swarm Adapter** die Leuchte auf die normale Beleuchtungsstärke (1). Die mit ihr drahtlos verbundenen Leuchten (2) schalten sich automatisch dazu und gestalten eine angenehme Grundbeleuchtung in der Umgebung. So werden Lichtinseln vermieden und eine angenehme und produktive Arbeitsatmosphäre geschaffen



luna geminus U Doppelkopf Stehleuchte

monos LED Stehleuchte luna geminus U mit 2 Leuchtenköpfen direkt/indirekt. paralellen Systemeffizienz bis 127lm/W, 4000K, CRI>80, L80/B10 bei 50.000h, UGR<19, Lichtfarbtoleranz MacAdam 3 bzw. 3 SDCM, wahlweise ausgestattet mit 1 oder 2 Schalter/Taster je nach Ausführung: Ein/Ausschalter, Dimm/Double-Dimm-Taster (Double-Dimm-Taster zur separaten Steuerung des direkten/indirekt Lichtanteils), mit Tageslicht- und Präsenz Sensorik sowie Dimm/Double-Dimm-Taster oder zusätzlicher Schwarm-intelligenz. Säule und Kopf in Farbe RAL 9006 strukturiert, ausgebildet als U-Form in Farbe Schwarz, Zuleitung L:3000mm mit Winkelstecker, Maße: H: 2000mm, Kopf 640mm x 310mm x H:55mm, Fuß 500mm x 470mm. Gesamtmaße H: 2000mm x B: 1120mm x T: 680mm. Die Auslieferung erfolgt in 5 Teilen (2 x Kopf, 2 x Säule, 1 x Fuß).

30% direkt / 70% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0336	On/Off	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.0337	Touch-DIM	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.0338	Touch-DIM+Sensor	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.0339	Sensorik + Schwarm	2x72	2x9200	4000	80	Mikroprisma	19

Datenblatt: www.monos.de/D24.034REV00

Iuna geminus U Doppelkopf Stehleuchte

D/I getrennt dimmbar = DTD 30% direkt / 70% indirekt

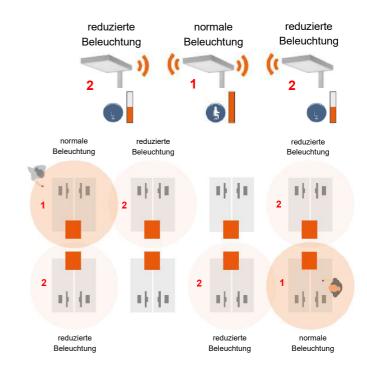
Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1962	Double-Touch-Dim	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.1963	DTD+Sensor	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.1964	DTD+Sensorik+Schwarm	2x72	2x9200	4000	80	Mikroprisma	19

25% direkt /75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0340	On/Off	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.0341	Touch-DIM	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.0342	Touch-DIM+Sensor	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.0343	Sensorik + Schwarm	2x108	2x13400	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 25% direkt /75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1965	Double-Touch-Dim	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.1966	DTD+Sensor	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.1967	DTD+Sensorik+Schwarm	2x108	2x13400	4000	80	Mikroprisma	19


Schwarm-Technik:

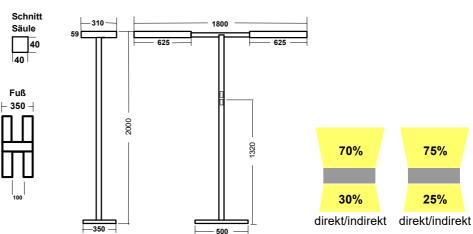
- Reichweite 50m
- 7 Zonen x 7 Gruppenadressen
- Auch überlappende Gruppen möglich
- Automatische Synchronisierung sensorgesteuerter Leuchten

Schwarmintelligenz:

Am besetzten Arbeitsplatz regelt der **Swarm Adapter** die Leuchte auf die normale Beleuchtungsstärke (1).

Die mit ihr drahtlos verbundenen Leuchten (2) schalten sich automatisch dazu und gestalten eine angenehme Grundbeleuchtung in der Umgebung. So werden Lichtinseln vermieden und eine angenehme und produktive Arbeitsatmosphäre geschaffen

luna geminus T Doppelkopf Stehleuchte


monos LED Stehleuchte luna geminus T mit 2 Leuchtenköpfen in einer Linie, Systemeffizienz direkt/indirekt, 127lm/W. 4000K. CRI>80. L80/B10 bei 50.000h. UGR<19. Lichtfarbtoleranz MacAdam 3 bzw. 3 SDCM, wahlweise ausgestattet mit 1 oder 2 Schalter/Taster je nach Ausführung: Ein/Ausschalter, Dimm/Double-Dimm-Taster (Double-Dimm-Taster zur separaten Steuerung des direkten/indirekt Lichtanteils), mit Tageslicht- und Präsenz Sensorik sowie Dimm/Double-Dimm-Taster oder zusätzlicher Schwarmintelligenz. Säule und Kopf in Farbe RAL 9006 strukturiert, Fuß ausgebildet als U-Form in Farbe Schwarz, Zuleitung L: 3000mm mit Winkelstecker, Maße: H: 2000mm, Kopf 625mm x 310mm x H:59mm, Fuß 500mm x 350mm. Gesamtmaße H: 2000mm x B: 1800mm x T: 310mm. Die Auslieferung erfolgt in 5 Teilen (2 x Kopf, 2 x Säule, 1 x Fuß).

40

Fuß

500

www.monos.de/22.021DREV00 Datenblatt:

luna geminus T Doppelkopf Stehleuchte

30% direkt / 70% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0344	On/Off	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.0345	Touch-DIM	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.0346	Touch-DIM+Sensor	2x72	2x9200	4000	80	Mikroprisma	19
005.0001.0347	Sensorik + Schwarm	2x72	2x9200	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD

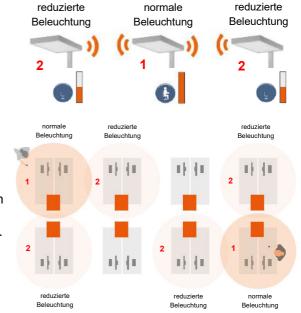
30% direkt / 70% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1968	Double-Touch-Dim	2x74	2x9200	4000	80	Mikroprisma	19
005.0001.1969	DTD+Sensor	2x74	2x9200	4000	80	Mikroprisma	19
005.0001.1970	DTD+Sensorik+Schwarm	2x74	2x9200	4000	80	Mikroprisma	19

25% direkt /75% indirekt

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.0348	On/Off	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.0349	Touch-DIM	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.0350	Touch-DIM+Sensor	2x108	2x13400	4000	80	Mikroprisma	19
005.0001.0351	Sensorik + Schwarm	2x108	2x13400	4000	80	Mikroprisma	19

D/I getrennt dimmbar = DTD 25% direkt /75% indirekt

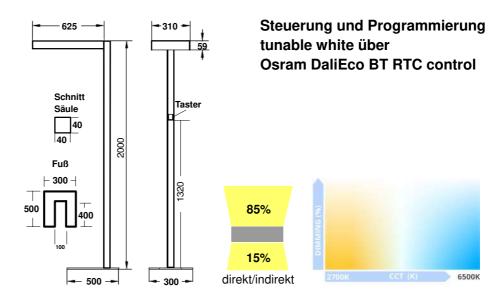

Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	UGR<
005.0001.1971	Double-Touch-Dim	2x104	2x13400	4000	80	Mikroprisma	19
005.0001.1972	DTD+Sensor	2x104	2x13400	4000	80	Mikroprisma	19
005.0001.1973	DTD+Sensorik+Schwarm	2x104	2x13400	4000	80	Mikroprisma	19

Schwarm-Technik:

- Reichweite 50m
- 7 Zonen x 7 Gruppenadressen
- Auch überlappende Gruppen möglich
- Automatische Synchronisierung sensorgesteuerter Leuchten

Schwarmintelligenz:

Am besetzten Arbeitsplatz regelt der **Swarm Adapter** die Leuchte auf die normale Beleuchtungsstärke (1). Die mit ihr drahtlos verbundenen Leuchten (2) schalten sich automatisch dazu und gestalten eine angenehme Grundbeleuchtung in der Umgebung. So werden Lichtinseln vermieden und eine angenehme und produktive Arbeitsatmosphäre geschaffen



luna bio LED Stehleuchte - tunable white

monos LED Stehleuchte luna bio Lichtverteilung TW. direkt/indirekt. Systemeffizienz 127lm/W. Lichtströme und direkt/indirekt, Lichtanteile dimensioniert zur normgerechten Beleuchtung von Bildschirmarbeitsplätzen und deren Umgebung, Gesamtlichtstrom 14.000lm, 85% Indirektanteil tunable white 2700K -6500K, gesteuert und programmiert über APP, 15% Direktanteil 4000K, gesteuert über Tasterdimmung sowie Tageslicht- und Präsenzsensorik, CRI>80, L80/B10 bei 50.000h, Lichtfarbtoleranz MacAdam 3 bzw. 3 SDCM, Kopf in Farbe RAL 9006 strukturiert, Fuß ausgebildet als U-Form in Farbe schwarz, Zuleitung L:3000mm mit Winkelstecker, Maße: H: 2000mm, Kopf 625mm x 310mm x H:59mm, Fuß 500mm x 300mm, die Auslieferung erfolgt in 3 Teilen (Kopf, Säule, Fuß).

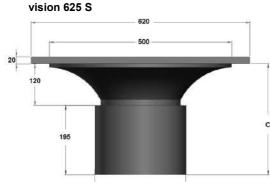
15% direkt / 85% indirekt

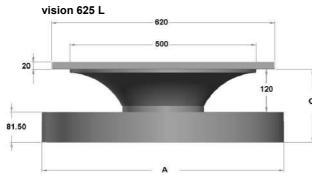
Artikelnummer	Schaltung	W	LM	CCT	CRI>	Optik	Blendung
005.0001.1234	tunable white	110	14000	4000	80	Mikroprisma	UGR<19

Datenblatt

Datenblatt: www.monos.de/22.043DREV00

Einbauleuchten




vision 625 - Design Einlegeleuchte

monos LED Einlegeleuchte vision 625, dekorative 3 dimensionale Leuchte zur Einlegemontage in M: 625 Decken mit sichtbarem Profil, Lichtverteilung wahlweise rein direkt oder direkt/ indirekt strahlend, Abdeckung wahlweise opal oder Mikroprisma UGR<19, IP20, Farbwiedergabe CRI>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Lebensdauer L80/B10 -50.000h, Gehäuse bestehend aus runder Anbauleuchte D: 250mm, 450mm oder 650mm, montiert an einem konisch zulaufenden Einbaudom 620mm x 620mm x H: 120mm, pulverbeschichtet wahlweise in den Farben RAL 9016 Weiss, RAL 9006 Weißaluminium oder RAL 9005 Schwarz (andere RAL Farben auf Anfrage). Die Leuchte wird in 3 Teilen geliefert.

Datenblatt

Ausstattungsvarianten:

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.mo	nos.de/D25.001REV00

vision 625 - Design Einlegeleuchte

vision S - opal - direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.3702	DALI	12	1126	4000	80	Opal	23	Weiss	250	315	5
005.0001.3706	DALI	12	1126	4000	80	Opal	23	Silbergrau	250	315	5
005.0001.3710	DALI	12	1069	4000	80	Opal	23	Schwarz	250	315	5

vision S - Mikroprisma - direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.3714	DALI	12	1473	4000	80	Mikroprisma	19	Weiss	250	315	5
005.0001.3718	DALI	12	1473	4000	80	Mikroprisma	19	Silbergrau	250	315	5
005.0001.3722	DALI	12	1473	4000	80	Mikroprisma	19	Schwarz	250	315	5

vision M - opal - direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.3726	DALI	35	3378	4000	80	Opal	23	Weiss	450	245	7
005.0001.3730	DALI	35	3378	4000	80	Opal	23	Silbergrau	450	245	7
005.0001.3734	DALI	35	3378	4000	80	Opal	23	Schwarz	450	245	7

vision M - Mikroprisma - direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.3738	DALI	35	4418	4000	80	Mikroprisma	19	Weiss	450	245	7
005.0001.3742	DALI	35	4418	4000	80	Mikroprisma	19	Silbergrau	450	245	7
005.0001.3746	DALI	35	4418	4000	80	Mikroprisma	19	Schwarz	450	245	7

vision L - opal - direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.3750	DALI	74	7166	4000	80	Opal	23	Weiss	650	202	11
005.0001.3754	DALI	74	7166	4000	80	Opal	23	Silbergrau	650	202	11
005.0001.3758	DALI	74	7166	4000	80	Opal	23	Schwarz	650	202	11

vision L - Mikroprisma - direkt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.3762	DALI	74	9371	4000	80	Mikroprisma	19	Weiss	650	202	11
005.0001.3766	DALI	74	9371	4000	80	Mikroprisma	19	Silbergrau	650	202	11
005.0001.3770	DALI	74	9371	4000	80	Mikroprisma	19	Schwarz	650	202	11

vision 625 - Design Einlegeleuchte

vision S - Opal - direkt/indirekt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.5315	DALI	12	1126	4000	80	Opal	23	Weiss	250	315	5
005.0001.5319	DALI	12	1126	4000	80	Opal	23	Silbergrau	250	315	5
005.0001.5323	DALI	12	1069	4000	80	Opal	23	Schwarz	250	315	5

vision S - Mikroprisma - direkt/ indirekt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.5327	DALI	12	1473	4000	80	Mikroprisma	19	Weiss	250	315	5
005.0001.5331	DALI	12	1473	4000	80	Mikroprisma	19	Silbergrau	250	315	5
005.0001.5335	DALI	12	1473	4000	80	Mikroprisma	19	Schwarz	250	315	5

vision M - Opal - direkt/indirekt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.5339	DALI	35	3378	4000	80	Opal	23	Weiss	450	245	7
005.0001.5343	DALI	35	3378	4000	80	Opal	23	Silbergrau	450	245	7
005.0001.5347	DALI	35	3378	4000	80	Opal	23	Schwarz	450	245	7

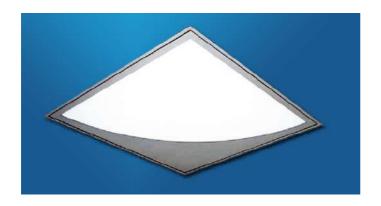
vision M - Mikroprisma - direkt/indirekt strahlend

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.5351	DALI	35	4418	4000	80	Mikroprisma	19	Weiss	450	245	7
005.0001.5355	DALI	35	4418	4000	80	Mikroprisma	19	Silbergrau	450	245	7
005.0001.5359	DALI	35	4418	4000	80	Mikroprisma	19	Schwarz	450	245	7

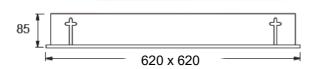
vision L - Opal - direkt/ indirekt strahlend

Artikelnummer	Treibe	r W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.5363	DALI	74	7166	4000	80	Opal	23	Weiss	650	202	11
005.0001.5367	DALI	74	7166	4000	80	Opal	23	Silbergrau	650	202	11
005.0001.5371	DALI	74	7166	4000	80	Opal	23	Schwarz	650	202	11

vision L - Mikroprisma - direkt/ indirekt strahlend


Artikelnummer	Treibe	· W	LM	CCT	CRI>	Optik	UGR <	Farbe	Α	С	Kg
005.0001.5375	DALI	74	9371	4000	80	Mikroprisma	19	Weiss	650	202	11
005.0001.5379	DALI	74	9371	4000	80	Mikroprisma	19	Silbergrau	650	202	11
005.0001.5383	DALI	74	9371	4000	80	Mikroprisma	19	Schwarz	650	202	11

contur 1 Einbau- Deckenleuchte


 Artikelnummer
 W

 2565.028.01.2
 28W

 2565.041.01.2
 36W

monos LED Einbauleuchte contur 1, LED oder T5, EVG, Ra >80, mit gelasertem Dekor zur kreativen Gestaltung von Lichtfiguren und modularen Lichtdecken, UV resistenter, opaler Abdeckung, IP40. Gehäuse aus Stahlblech, pulverbeschichtet, wahlweise in den Farben RAL 9006 silbergrau oder RAL 9016 weiß zum Einbau in Modul 625 Decken mit sichtbarem Profil (für geschnittene Deckenöffnungen und Decken mit nicht sichtbarem Profil mit Zubehör 9710.07.20). L: 620mm x B: 620mm x H: 85mm. Lichtfarbtoleranz MacAdam 3.

Schulungsraum, Neuwied

 Lichtfarbe
 28W
 36W

 4000K
 1860lm
 2580lm

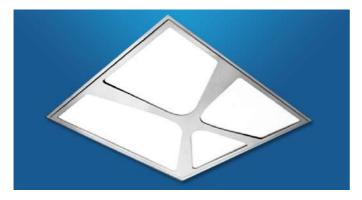
Lieferbar auch mit Laserdekor nach Vorgabe des Kunden

Montagesatz Artikelnummer 9710.07.20 1 Satz Einbauwinkel

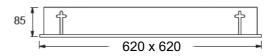
Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.004REV00



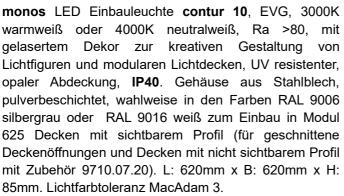


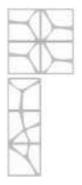

contur 9 Einbau- Deckenleuchte

Artikelnummer	W
2365.028.09.*	28W
2365.041.09.*	36W

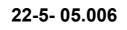
monos LED Einbauleuchte contur 9, EVG, Ra >80, mit gelasertem Dekor zur kreativen Gestaltung von Lichtfiguren und modularen Lichtdecken, UV resistenter, opaler Abdeckung, IP40. Gehäuse aus Stahlblech, pulverbeschichtet, wahlweise in den Farben RAL 9006 silbergrau oder RAL 9016 weiß zum Einbau in Modul 625 Decken mit sichtbarem Profil (für geschnittene Deckenöffnungen und Decken mit nicht sichtbarem Profil mit Zubehör 9710.07.20). L: 620mm x B: 620mm x H: 85mm. Lichtfarbtoleranz MacAdam 3.

Montagesatz Artikelnummer 9710.07.20 1 Satz Einbauwinkel





contur 10 Einbau- Deckenleuchte

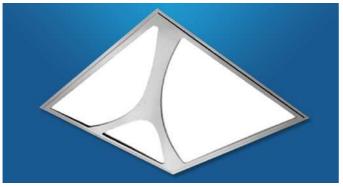

Artikelnummer	W
2565.028.10.2	28W
2565.041.10.2	36W

Lieferbar auch mit Laserdekor nach Vorgabe des Kunden

Lichtfarbe	28W	36W
4000K	2100lm	2750lm

28W

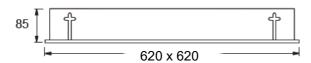
36W


conturLED 11

Artikelnummer 2565.028.11.2

2565.041.11.2

EVG


contur 11 Einbau- Deckenleuchte

Monos LED Einbauleuchte **contur 11**, EVG, 3000K warmweiß oder 4000K neutralweiß, Ra >80, mit gelasertem Dekor zur kreativen Gestaltung von Lichtfiguren und modularen Lichtdecken, UV resistenter, opaler Abdeckung, **IP40**. Gehäuse aus Stahlblech, pulverbeschichtet, wahlweise in den Farben RAL 9006 silbergrau oder RAL 9016 weiß zum Einbau in Modul 625 Decken mit sichtbarem Profil (für geschnittene

Deckenöffnungen und Decken mit nicht sichtbarem Profil mit Zubehör 9710.07.20). L: 620mm x B: 620mm x H:

AHA

85mm. Lichtfarbtoleranz MacAdam 3.

Lieferbar auch mit Laserdekor nach Vorgabe des Kunden

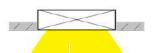
Montagesatz

Artikelnummer

9710.07.20 1 Satz Einbauwinkel

 Lichtfarbe
 28W
 36W

 4000K
 2100lm
 2750lm


sky Einlegeleuchten

monos LED Einlegeleuchte sky, für bedruckte opale Acrylscheibe, Motiv nach Wahl (Aufteilung auf X Leuchten je nach Motiv) 4000K, CRI80, L80/B10 - 50000h, Lichtfarbtoleranz MacAdam 3 (3 SDCM), zur reinen dekorativen Beleuchtung, Gehäuse aus Feinblech pulverbeschichtet in Farbe RAL9016 Weiss, Abdeckung in speziellem Rahmen, IP40, quadratisch: zur Einlegemontage in M:625 Decken mit sichtbaren Profil sowie Einbau in geschnittene Deckenöffnungen (mit Zubehör 9710.07.20). Maße L: 620mm x B: 620mm x H: 75mm

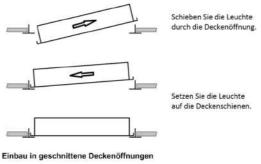
Rund: Einbau in geschnittene Deckenöffnungen; D: 470mm und 670mm.

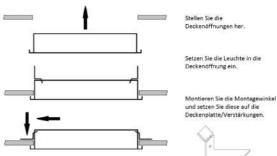
Bitte geben Sie an, auf wie viele Leuchten das Dekor aufgeteilt werden soll. Die gewünschte Aufteilung der Dekore muss im Vorfeld geprüft werden.

Datenblatt

Quadratisch

Artikelnummer	W	Maße
005.0001.0582	36W	620 x 620 x75


Rund


Artikelnummer	W	Maße
005.0001.3210	35W	D:470mm
005.0001.3204	63W	D:670mm

Aufpreise

Artikelnummer	Bezeichnung
2045.001.01	Zukauf und Einrichtung Motiv
	nach Kundenwunsch
2045.001.02	Einrichtung Foto je Motiv

Einlegemontage

Ausstattungsvarianten:

	onos de/D24 003RFV00
Notlichtakku:	Ja
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF, DALI
Lichtfarben:	3000K, 4000K, 6500K

sky Aufbauleuchten

EVG

Artikelnummer	W	Maße
010.0001.0016	35W	625 x 625 x 60

Aufpreise

Artikelnummer	Bezeichnung
2045.001.01	Zukauf und Einrichtung
	Motiv nach
	Kundenwunsch
2045.001.02	Einrichtung Foto je
	Motiv

monos LED Aufbauleuchte sky für bedruckte opale Acrylscheibe, Motiv nach Wahl (Aufteilung variable - je nach Motiv) CRI80, zur reinen dekorativen Beleuchtung, Gehäuse aus Feinblech pulverbeschichtet in Farbe Weiss, Abdeckung in speziellem Rahmen, IP40, Aufbaumontage, Maße L/B/H: 625 x 625 x 60mm.

Bitte geben Sie an, auf wie viele Leuchten das Dekor aufgeteilt werden soll.

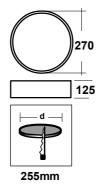
Die gewünschte Aufteilung der Dekore muss im Vorfeld geprüft werden.

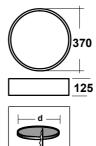
Der Druck von Kundenmotiven ist möglich. Auflösung mindestens 150dpi je Leuchtenfeld

Die maximale Verteilung der Dekore auf Leuchtengruppen muss im Vorfeld geprüft werden.

Mögliche Dekore

Weitere Dekore auf Anfrage




monos LED Einbauleuchte mit Einbauring radius E, EVG, CRI >80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Gehäuse aus Aluminium und Stahlblech, Farbe silbergrau, opale Abdeckung, Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 125mm.

Sondermaße nach Vorgabe des Bauherrn möglich

radius - E 270		
Artikelnummer	W	
3305.001.01.*	13W	
3505.001.01. *	13W	

radius - E 370		
Artikelnummer	W	
3305.001.02.*	24W	
3505.001.02.*	24W	

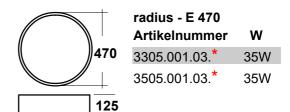
Artikelnummer 3305.001.01.1 Vorschaltgerät -3 EVG 5 Dali

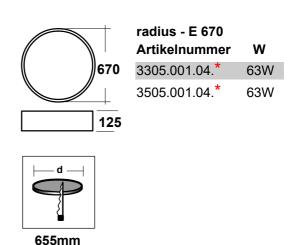
	Lichtfarbe	13W	24W
*	1 = 3000K	1230lm	2300lm
*	2 = 4000K	1230lm	2300lm

Datenblatt

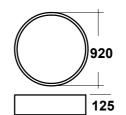
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K ON/OFF DALI Treiber Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Ja Datenblatt: www.monos.de/D24.027REV00




monos LED Einbauleuchte mit Einbauring **radius E**, EVG, CRI >80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Gehäuse aus Aluminium und Stahlblech, Farbe silbergrau, opale Abdeckung, Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 125mm.

Sondermaße nach Vorgabe des Bauherrn möglich


	Lichtfarbe	35W	63W
*	1= 3000K	3380lm	6140lm
*	2= 4000K	4380lm	6140lm



radius - E 920 Artikelnummer W 3305.001.05.* 113W 3505.001.05.* 113W

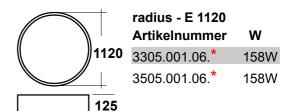
monos LED Einbauleuchte mit Einbauring radius E, EVG, CRI >80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Gehäuse aus Aluminium und Stahlblech, Farbe silbergrau, opale Abdeckung, Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 125mm.

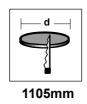
Sondermaße nach Vorgabe des Bauherrn möglich

Artikelnummer 3305.001.05.1

Vorschaltgerät 3 EVG 5 Dali

	Lichtfarbe	113W
*	1 = 3000K	11060lm
*	2 = 4000K	11060lm



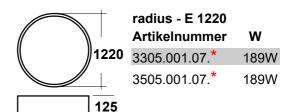


monos LED Einbauleuchte mit Einbauring radius E, EVG, CRI >80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Gehäuse aus Aluminium und Stahlblech, Farbe silbergrau, opale Abdeckung, Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 125mm.

Sondermaße nach Vorgabe des Bauherrn möglich

Artikelnummer
3305.001.06.1
Vorschaltgerät
3 EVG
5 Dali

	Lichtfarbe	158W
*	1= 3000K	15360lm
*	2 = 4000K	15360lm



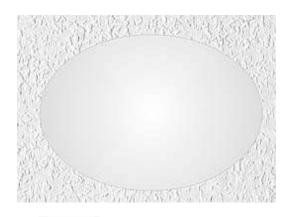
radius E Einbauleuchte mit Einbauring

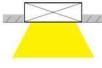
monos LED Einbauleuchte mit Einbauring radius E, EVG, CRI >80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Gehäuse aus Aluminium und Stahlblech, Farbe silbergrau, opale Abdeckung, Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 125mm.

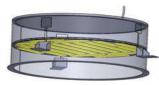
Sondermaße nach Vorgabe des Bauherrn möglich

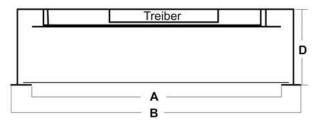
Artikelnummer		
3305.001.07.1		
1		
Vorschaltgerät		
L ₃	EVG	
5	Dali	

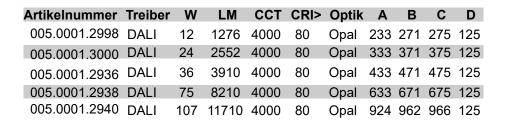
	Lichtfarbe	189W
*	1 = 3000K	18430lm
*	2 = 4000K	18430lm



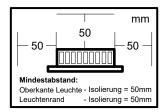





radius trimless Einbauleuchte



monos LED Einbauleuchte radius trimless, zum rahmenlosen Einbau in geschnittene Decken-öffnungen, CRI >80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Lebensdauer L80/B10 bei 50.000h, Gehäuse aus Aluminium und Stahlblech in Farbe Weiss, eingelegte opale Abdeckung, Transluzenz optimiert für LED, H: 125mm, Treiber in der Leuchte, ohne Ausbau der Leuchte von unten revisierbar.



Einbauleuchten dürfen nicht mit Isolationsmatten oder ähnlichem Isolationsmaterial abgedeckt werden (Hitzestau/ Brandgefahr).

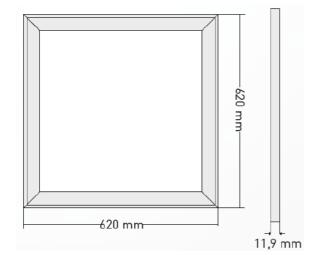
Datenblatt

Ausstattungsvarianten:

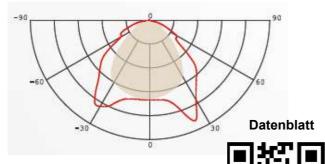
Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.023REV00

bara pro Einlegeleuchte



Artikelnummer W 2337.002.01.2 37W

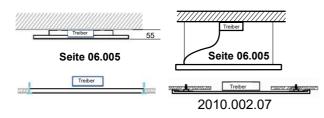

monos LED Einlegeleuchte bara pro, 37W, 4000K, CRI>80, <5 SDCM, 3750lm, L70 bei 50.000h, Systemeffizienz 101lm/W, inkl. flimmerfreiem Treiber, zur Einlegemontage in M:625 Decken mit sichtbarem Profil, 620 x 620 x H: 11mm, Gehäuse Aluminium in Farbe weiß, Leuchtenabdeckung Mikroprisma 65° in Lightconetechnik UGR<19

Artikelnummer
2337.002.01.2
Vorschaltgerät
3 EVG
5 Dali

Lichtfarbe 37W 4000K 3750lm

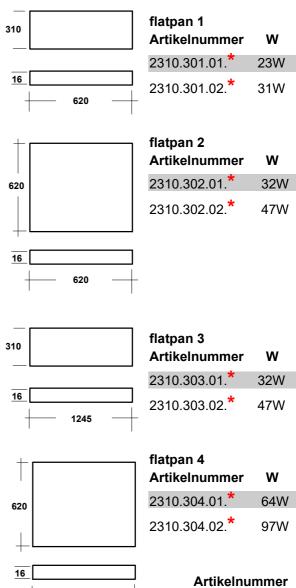
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.050REV00



flatpan - Einlegeleuchte Mikroprisma

monos flache LED Einbauleuchte flatpan, EVG, Ra>80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Garantie 5 Jahre. Einlegemontage in M:625 Decken mit sichtbarem Profil oder mit Einbauzubehör (separat bestellen 2010.002.02) zum Einbau geschnittene Deckenöffnungen, Pendelleuchte mit 4-fach Pendelsatz L:1000mm (separat bestellen 2010.002.01) oder als Anbauleuchte mit Montagezubehör (separat bestellen 2010.002.03), Gehäuse Aluminium und Stahlblech, H: 16mm, Leuchtenabdeckung Mikroprisma Lightconetechnik. 5 Jahre Garantie = Lichtfarbtoleranz MacAdam 3



Treiber: L:160 x B: 82 x H: 34mm

Montagezubehör

Artikelnummer Beschreibung

2010.002.01 4-Fach Seilpendel L:1000mm 2010.002.04 Notlichtakku 3W/1h 2010.002.07 Montagekit Halbeinbau

 Lichtfarbe
 23W
 31W
 32W
 47W
 64W
 97W

 * 2= 4000K
 2335lm
 3200lm
 3270lm
 4855lm
 6440lm
 9710lm

Datenblatt

Ausstattungsvarianten:

1245

Datenblatt: www.r	nonos.de/D24.035REV00
Notlichtakku:	Nein
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF
Lichtfarben:	3000K, 4000K, 6500K

2310.301.01.1

3

Vorschaltgerät

EVG

Dali

W

23W

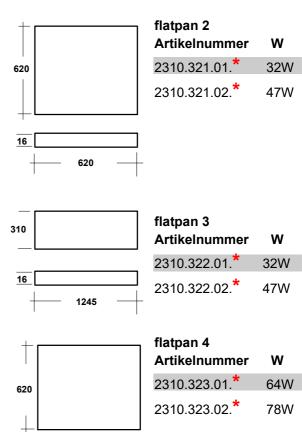
31W

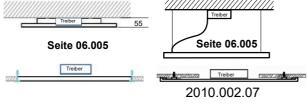
flatpan 1

Artikelnummer

2310.320.01.*

2310.320.02.*


310


16

flatpan - Einlegeleuchte opal

monos flache LED Einbauleuchte flatpan, EVG, Ra>80, Lichtfarbtoleranz MacAdam 3 Garantie 3), 5 Jahre, Einlegemontage in M:625 Decken sichtbarem Profil oder mit Einbauzubehör (separat bestellen 2010.002.02) zum Einbau geschnittene Deckenöffnungen, Pendelleuchte 4-fach Pendelsatz mit L:1000mm (separat bestellen 2010.002.01) oder als Anbauleuchte mit Montagezubehör (separat bestellen 2010.002.03), Gehäuse Aluminium und Stahlblech, H: 16mm, Leuchtenabdeckung opal IP40. 5 Jahre Garantie = Lichtfarbtoleranz MacAdam 3

Treiber: L:160 x B: 82 x H: 34mm

Montagezubehör

Artikelnummer Beschreibung

2010.002.01 4-Fach Seilpendel L:1000mm 2010.002.04 Notlichtakku 3W/1h 2010.002.07 Montagekit Halbeinbau

 Lichtfarbe
 23W
 31W
 32W
 47W
 64W
 78W

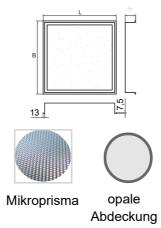
 ★ 2= 4000K
 2335lm
 3175lm
 3270lm
 4855lm
 6440lm
 7410lm

Artikelnummer 2310.320.01.1 Vorschaltgerät 3 EVG 5 Dali

Datenblatt

Ausstattungsvarianten:

Datenblatt: www.n	nonos.de/D24.036REV00
Notlichtakku:	Nein
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF
Lichtfarben:	3000K, 4000K, 6500K


16

classic 1 BAP- Einbauleuchte

monos LED Einbauleuchte classic, EVG, CRI80, Lichtfarbtoleranz MacAdam 3, Gehäuse aus Feinblech pulverbeschichtet in Farbe weiß, 65° Mikroprisma in Lightconetechnik oder opal, IP40, zur Einlegemontage in M:625 Decken mit sichtbarem Profil sowie Einbau in geschnittene Deckenöffnungen (mit Zubehör 9710.07.20).

Quadratisch

Mikroprisma -UGR<19			
Artikelnummer W			
2310.301.08.*	32W		
2310.302.08.*	53W		
Opal			
Artikelnummer	W		
2310.301.12.*	32W		
2310.302.12.*	53W		

Langfeld

Mikroprisma -UGR<19		
Artikelnummer	W	
2310.303.10.*	32W	
2310.304.10.*	53W	
2310.305.10.*	40W	
2310.306.10.*	65W	
Opal		
Artikelnummer	W	
2310.303.12.*	32W	
2310.304.12.*	53W	
2310.305.12.*	40W	
2310.306.12.*	65W	

Artkelnummer Bezeichnung 9710.07.20 Montagewinkel

Quadratisch

		Mikroprisma		Opal	
	Lichtfarbe	32W	53W	32W	53W
*	1 = 3000K	3865lm	5830lm	4370lm	6590lm
*	2 = 4000K	4070lm	6140lm	4600lm	6940lm

Maße 32W, 53W	L: 620 x B: 620mm
Einbaumaße	L: 610 x B: 610mm
Maße 32W, 53W	L: 1245 x B: 308mm
Einbaumaße	L: 1235 x B: 290mm
Maße 40W, 65W	L: 1545 x B: 308mm
Einbaumaße	L: 1530 x B: 290mm

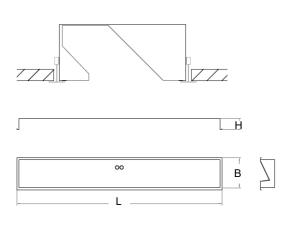
Langfeld	Mikrop	risma			Opal			
Lichtfarbe	32W	40W	53W	65W	32W	40W	53W	65W
* 1= 3000K	3410lm	3930lm	5215lm	6290lm	3825lm	4415lm	5850lm	7068lm
* 2= 4000K	3590lm	4140lm	5490lm	6630lm	4030lm	4650lm	6160lm	7440lm

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.mo	nos.de/D24.037REV00

W

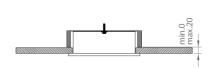
32W

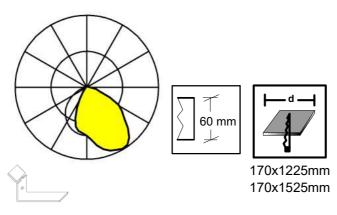

39W

ben E asym Einbauleuchte

monos LED Einbauleuchte ben E asym asymmetrisch, EVG, CRI80, Lichtfarbtoleranz MacAdam 3, Gehäuse aus Feinblech pulverbeschichtet in Farbe weiß, Reflektor asymmetrisch aus Reinstaluminium in Hochglanzoptik, zur Einlegemontage in M:625 Decken mit sichtbarem Profil sowie zum Einbau in geschnittene Deckenöffnungen (mit Zubehör 9710.07.20)

32W = L: 1245mm x B: 187mm 39W = L: 1545mm x B: 187mm




EVG

Artikelnummer

2310.301.05.*

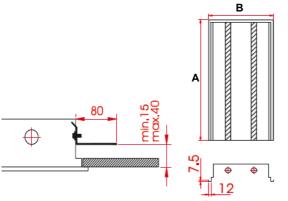
2310.302.05.*

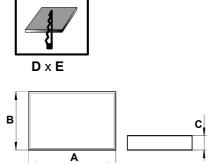
Artkelnummer Bezeichnung 9710.07.20 Montagewinkel

Lichtfarbe	32W	39W
* 1= 3000K	2930lm	3660lm
* 2= 4000K	3085lm	3855lm

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www mo	nos de/D24 038RFV00




Capella E LED Lichtband Einbauleuchte

monos LED Lichtband-Einbauleuchte Capella E, EVG, CRI>80, L80/B10-50.000h, Doppel-Parabolraster aus Reinstaluminium mit durchlaufender Optik, UGR<16 – UGR >19, für Bildschirmarbeitsplätze geeignet, Gehäuse aus Feinblech pulverbeschichtet in Farbe Weiss, als Endoder Mittelmodul, inklusive Längsverbinder zum Verbinden von Leuchten,

Systemeffizienz bis 138lm/W.

Endmodule B: 188mm

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	Blendung	Α	В	С	D	Е	Kg
010.0001.0199	DALI	15	2070	4000	80	Parabolraster	<16	1245	188	60	1240	173	3
010.0001.0200	DALI	29	3640	4000	80	Parabolraster	<16	1245	188	60	1240	173	3
010.0001.0201	DALI	18	2375	4000	80	Parabolraster	<16	1545	188	60	1540	173	4
010.0001.0202	DALI	27	3500	4000	80	Parabolraster	<16	1545	188	60	1540	173	4
010.0001.0203	DALI	50	6015	4000	80	Parabolraster	<19	1545	188	60	1540	173	4

Mittelmodule B: 188mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	D	Ε	Kg
010.0001.0219	DALI	15	2070	4000	80	Parabolraster	<16	1229	188	60	1229	173	3
010.0001.0220	DALI	29	3640	4000	80	Parabolraster	<16	1229	188	60	1229	173	3
010.0001.0221	DALI	18	2375	4000	80	Parabolraster	<16	1529	188	60	1529	173	4
010.0001.0222	DALI	27	3500	4000	80	Parabolraster	<16	1529	188	60	1529	173	4
010.0001.0223	DALI	50	6015	4000	80	Parabolraster	<19	1529	188	60	1529	173	4

Datenblatt

Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Dataphatt: www.mo	nos de/D24 039REV/00

Capella E LED Lichtband Einbauleuchte

Endmodule B: 188mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	D	E	Kg
010.0001.0245	DALI	15	2070	4000	80	Parabolraster	<16	635	310	60	630	295	3
010.0001.0246	DALI	28	3725	4000	80	Parabolraster	<16	1245	310	60	1240	295	4
010.0001.0247	DALI	38	4955	4000	80	Parabolraster	<16	1245	310	60	1240	295	4
010.0001.0248	DALI	57	7110	4000	80	Parabolraster	· <18	1545	310	60	1540	295	4
010.0001.0249	DALI	37	4895	4000	80	Parabolraster	<16	1545	310	60	1540	295	8
010.0001.0250	DALI	55	7025	4000	80	Parabolraster	<16	1545	310	60	1540	295	8
010.0001.0251	DALI	75	9180	4000	80	Parabolraster	<18	1545	310	60	1540	295	8

Mittelmodule B: 188mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	D	E	Kg
010.0001.0273	DALI	15	2070	4000	80	Parabolraster	<16	619	310	60	619	295	3
010.0001.0274	DALI	28	3725	4000	80	Parabolraster	<16	1229	310	60	1229	295	4
010.0001.0275	DALI	38	4955	4000	80	Parabolraster	<16	1229	310	60	1229	295	4
010.0001.0276	DALI	57	7110	4000	80	Parabolraster	<18	1229	310	60	1229	295	4
010.0001.0277	DALI	37	4895	4000	80	Parabolraster	<16	1529	310	60	1529	295	8
010.0001.0278	DALI	55	7025	4000	80	Parabolraster	<16	1529	310	60	1529	295	8
010.0001.0279	DALI	75	9180	4000	80	Parabolraster	<18	1529	310	60	1529	295	8

4-flammig

Treiber

Treiber

Treiber

Treiber

Treiber

3

2

2

1

W

47W

W

47W

W

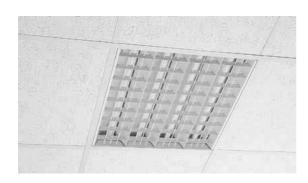
70W

W

93W

W

144W


2-flammig

2-flammig

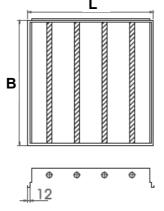
4-flammig

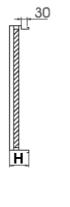
4-flammig

sport E Einbauleuchte

monos sport E 1- 6, mehrflammige LED Einbauleuchte für Sportstätten, EVG, CRI>80, Lichtfarbtoleranz MacAdam 3, Gehäuse aus Feinblech, pulverbeschichtet in Farbe weiß, Hochleistungsreflektor aus Reinstaluminium in Hochglanzoptik, LED in opaler Blendschutzkammer, Ballschutzgitter. Zur Einlegemontage in M:625 Decken mit sichtbarem Profil oder zum Einbau in geschnittene Deckenöffnungen (mit Zubehör 9710.07.20).

E1	47W = L:	620mm	xB:	620mm
E2	47W = L: 1	245mm	xB:	310mm
E3	70W = L: 1	545mm	xB:	310mm
E4	93W = L: 1	245mm	xB:	620mm
E5	144W = L: 1	545mm	xB:	620mm
E6	$204M - 1 \cdot 1$	515mm	v D.	620mm


sport E 6	4-flan	nmig
Artikelnummer	W	Treiber
2310.306.06.*	204W	3


Einbaumaße

E1 L: 605mm x B: 605mm E2 L: 1230mm x B: 290mm E3 L: 1530mm x B: 290mm E4 L: 1230mm x B: 605mm E5 L: 1530mm x B: 605mm E6 L: 1530mm x B: 605mm

Artkelnummer Bezeichnung 9710.07.20 Montagewinkel

sport E 1

Artikelnummer

2310.301.06.*

sport E 2
Artikelnummer

2310.302.06.*

sport E 3

sport E 4

Artikelnummer

Artikelnummer

2310.304.06.*

sport E 5

Artikelnummer

2310.305.06.*

2310.303.06.*

2310.301.06.1

Vorschaltgerät

3 EVG
5 Dali

	Lichtfarbe	47W	70W	93W	144W	204W
*	1 = 3000K	5810lm	8620lm	11365lm	17655lm	24400lm
*	2 = 4000K	6125lm	9075lm	11965lm	18585lm	25690lm

Datenblatt

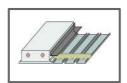
Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.moi	nos.de/D24.040REV00

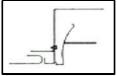
ben pan Paneel-Einbauleuchten


monos LED Einbauleuchte ben pan zum Einbau in Metall-Paneeldecken Modul 100 mittels an beiden Seiten angebrachter Winkelschienen zur Auflage auf dem Decken -Trageprofil, IP40, Leuchtengehäuse aus Stahlblech pulverbeschichtet weiß. Opale Abdeckung.

Einzelleuchte

 Artikelnummer
 W
 Länge


 2310.301.10.2.
 15W
 1248 mm


andere Wattagen und Größen auf Anfrage

Winkelschiene

Lichtfarbe 15W 4000K 2050lm

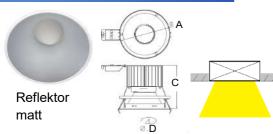
Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Notiichtakku. Ja

Datenblatt: www.monos.de/D24.041REV00



vario-T - Einbaudownlight UGR <19

monos LED Einbaudownlight vario-T, EVG, Ra>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L90/F10 > 50.000h, Gehäuse aus Aluminium und Stahlblech, Reflektor aus Reinstaluminium in matter Optik, UGR <19, Einbauring Bajonettverschluss Farbe Weiss, vorbereitet zur nachträglichen Bestückung von Zusatzgläsern bis IP44, passive Kühlung.

Mittig mattiert

klar

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Blendung	Farbe	Α	С	D	Kg
005.0001.1466	DALI	13	1670	4000	80	90	UGR<19	Weiss	165	132	148	0,8
005.0001.1467	DALI	20	2523	4000	80	90	UGR<19	Weiss	165	132	148	0,8
005.0001.1468	DALI	33	3617	4000	80	90	UGR<19	Weiss	165	132	148	0,8
005.0001.1116	DALI	13	1670	4000	80	90	UGR<19	Weiss	185	132	168	1,0
005.0001.1117	DALI	20	2523	4000	80	90	UGR<19	Weiss	185	132	168	1,0
005.0001.1118	DALI	33	3617	4000	80	90	UGR<19	Weiss	185	132	168	1,0
005.0001.1122	DALI	13	1670	4000	80	90	UGR<19	Weiss	220	132	203	1,2
005.0001.1123	DALI	20	2523	4000	80	90	UGR<19	Weiss	220	132	203	1,2
005.0001.1124	DALI	33	3617	4000	80	90	UGR<19	Weiss	220	132	203	1,2
005.0001.1128	DALI	13	1670	4000	80	90	UGR<19	Weiss	255	138	238	1,4
005.0001.1129	DALI	20	2523	4000	80	90	UGR<19	Weiss	255	138	238	1,4
005.0001.1130	DALI	33	3617	4000	80	90	UGR<19	Weiss	255	138	238	1.4

Abdeckung PMMA IP44 zu D: 165mm

Klar

0001.0514	Klar	0001.0515	Opal	0001.0586	Mittig mattiert		
Abdookung DN	1MA ID44	D. 405mm					
Abdeckung PN	IIVIA IP44 ZU	D: Toomin					
0001.0516	Klar	0001.0517	Opal	0001.0587	Mittig mattiert		
Abdeckung PN	1ΜΔ ID44 711	D: 220mm					
Abueckung Fit	11VIA IF 44 ZU	D. ZZVIIIIII					
0001.0518	Klar	0001.0519	Opal	0001.0588	Mittig mattiert		
					_		
Abdeckung PMMA IP44 zu D: 255mm							

Opal

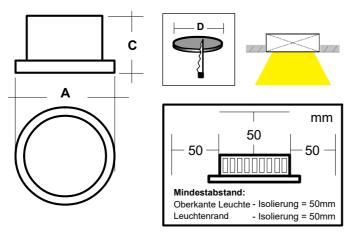
0001.0521

Ausstattungsvarianten:

0001.0589

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.moi	nos.de/D24.042REV00

0001.0520


Mittig mattiert

shore-S Einbaudownlight UGR<19

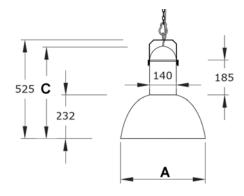
monos LED Einbaudownlight shore-S, UGR<19 mit geringer Einbauhöhe, Lichtfarbtoleranz MacAdam 3 (3 SDCM), 50.000h - L70/B20, Ra >80, Gehäuse und Einbauring aus Aluminium Druckguß Weiss, Abdeckung Mikroprisma opalisiert UGR<19, für Bildschirmarbeitsplätze geeignet, Schutzart IP44.

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	С	D
005.0001.1378	DALI	8	850	4000	80	90	Mikro	UGR<19	Weiss	94	50	78
005.0001.1386	DALI	12	1215	4000	80	90	Mikro	UGR<19	Weiss	120	50	104
005.0001.1394	DALI	16	1579	4000	80	90	Mikro	UGR<19	Weiss	147	60	125
005.0001.1402	DALI	22	2187	4000	80	90	Mikro	UGR<19	Weiss	177	70	154
005.0001.1410	DALI	27	3037	4000	80	90	Mikro	UGR<19	Weiss	228	75	203

Einbauleuchten dürfen nicht mit Isolationsmatten oder ähnlichem Isolationsmaterial abgedeckt werden (Hitzestau/ Brandgefahr).

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.mo	nos de/D24 043RFV00


Pendelleuchten und Anbauleuchten

atria 450 - LED Pendelleuchte

Die monos LED Pendelleuchte atria 450 ist ein Designklassiker. Durch die Kombination aus Form und Funktion ergibt sich ein industrieller Retro-Look, der ideal zu den Trends unserer Zeit passt. Das Gehäuse ist aus Aluminium und Stahlblech gefertigt und wahlweise pulverbeschichtet in Standardfarbe RAL 9005 schwarz, RAL Farbe nach Wahl oder Edelrost Optik. Die Leuchte ist mit oder ohne Mikroprisma (UGR<19) Abdeckung lieferbar und kann so in fast allen Arbeitsbereichen eingesetzt werden. Der Pendelsatz mit einer Länge von 1500mm besteht aus schwarzer Zuleitung, schwarzem Deckenbaldachin sowie Knotenkette.

Ausführung "Office" Mikroprisma UGR<19

Artikelnumme	r Treiber	W	LM	CCT	CRI>	Optik	Α	С
005.0001.2507	DALI	35	3600	4000	80	Mikroprisma	450	500
005.0001.2508	DALI	85	8600	4000	80	Mikroprisma	450	500

Ausführung "Offen" ohne Abdeckung mit Reflektor innen weiss

Artikelnumme	r Treibe	r W	LM	CCT	CRI>	Optik	Α	С
005.0001.2760	DALI	35	4320	4000	80	ohne	450	500
005.0001.2761	DALI	85	10300	4000	80	ohne	450	500

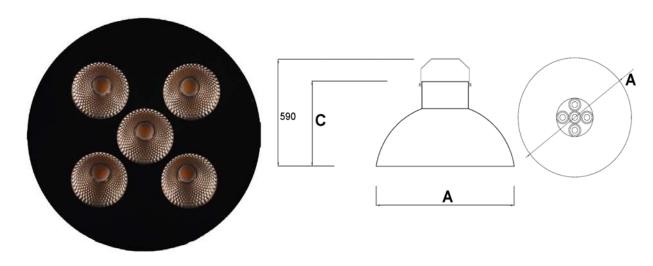
Option -Optik Edelrost

www.monos.de/D24.072REV00

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.060REV00



atria 800 - LED Pendelleuchte

Die monos LED Pendelleuchte atria 800 ist in einem industriellen Design gefertigt. Das Gehäuse aus Aluminium und Stahlblech ist wahlweise in Standardfarbe RAL 9005 schwarz, RAL Farbe nach Wahl oder Edelrost Optik lieferbar. 5 COB LED in Einzelreflektoren aus Reinstaluminium und der besonders große, schwarze Außenreflektor, D: 800mm x H: 470mm, bieten eine natürliche Entblendung bei höchsten Lichtströmen. Der Pendelsatz mit einer Länge von 1500mm besteht aus schwarzer Zuleitung, schwarzem Deckenbaldachin sowie Knotenkette.

 ArtikelnummerTreiber
 W
 LM
 CCT CRI>
 Optik
 A
 C

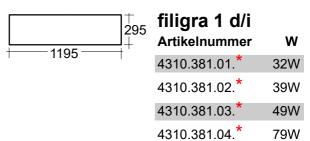
 005.0001.3328
 DALI
 132
 13800
 4000
 80
 Reflektor schwarz
 800
 470

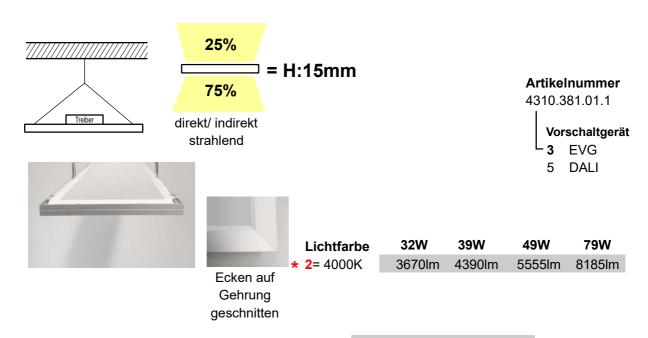
www.monos.de/D24.072REV00

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.061REV00

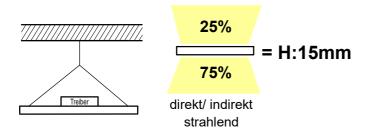




filigra 1 Pendelleuchte H:15mm - Mikroprisma - direkt/ indirekt strahlend

monos flache LED Pendelleuchte filigra 1 lightcone, EVG, direkt/indirekt, Ra>80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Garantie 5 Jahre, Gehäuse Aluminium und Stahlblech, Maße 1195mm x 295mm x H: 15mm, Leuchtenabdeckung Mikroprisma 65° in Lightconetechnik, für Bildschirmarbeitsplätze, UGR<19, IP40, inklusive Y-Pendelsatz mit transparenter Zuleitung L: 1000mm.

Dataphlatt: www.mon	os de/D24 052REV00
Notlichtakku:	Nein
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF, DALI
Lichtfarben:	3000K, 4000K, 6500K


filigra ultraflache Pendelleuchte

- direkt/ indirekt strahlend

monos extrem flache LED Pendelleuchte filigra d/i, direkt/ indirekt strahlend, EVG, Ra>80, Lichtfarbtoleranz MacAdam 3 (SDCM 3), Garantie 5 Jahre, inklusive Y- Pendelsatz und transparenter Zuleitung. L:1000mm. Gehäuse aus ultraflachem Aluminiumprofil H:15mm, Farbe Alu natur, Leuchtenabdeckung opal seidenmatt IP40.

Ecken auf Gehrung geschnitten

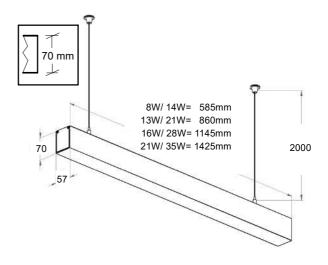
4310.305.01.1 Vorschaltgerät 3 EVG 5 DALI

	Lichtfarbe	49W
*	1 = 3000K	4980lm
*	2 = 4000K	5247lm

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.064REV00



lucid Anbauleuchte

monos dekorative Anbauleuchte lucid dekorative Anbauleuchte für Decke oder Wand, direkt strahlend, LED, EVG, CRI>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 bei 50.000h, Gehäuse aus Aluminium, Farbe silbergrau, Rundumabdeckung aus PMMA opal satin, Pendelsatz für Pendelmontage separat bestellen.

lucidLED	
Artikelnummer	W
7354.032.01.*	8W
7354.032.02.*	14W
7354.033.01.*	13W
7354.033.02.*	21W
7354.034.01.*	16W
7354.034.02.*	28W
7354.035.01.*	21W
7354.035.02.*	35W

Zubehör

Artikelnummer	Bezeichnung
7054.05.35	transparente Zuleitung
	3x0,75mm ² - L: 2000mm mit
	Deckenbaldachin
7054.07.52	1 Paar Seilpendel L: 2000mm

Artikelnummer
7354.032.01.1

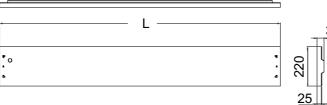
Vorschaltgerät
3 EVG
5 DALI

Lichtfarbe	W8	13W	14W	21W	16W	21W	28W	35W
*1= 3000K	1500lm	2250lm	2340lm	3510lm	3000lm	3750lm	4680lm	5850lm
*2= 4000K	1580lm	2370lm	2450lm	3690lm	3160lm	3950lm	4900lm	6150lm

Datenblatt

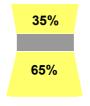
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Nein
Datenblatt: www.monos.de/D24.065REV01



monsun 1 - Pendelleuchte

monos elegante, superflache LED Pendelleuchte monsun 1 direkt/indirekt, Lichtverteilung 40% indirekt/ 60% direkt, LED, EVG, CRI>80, 50.000h-L80/B10, Lichtfarbtoleranz MacAdam 3 (3SDCM), mit extraflachem rechteckigem Gehäuse aus weissem Feinblech H:38mm – sichtbar H:25mm, B: 220mm. Abdeckung wahlweise opal oder 65° Mikroprisma in Lightconetechnik, UGR<19, inklusive höhenverstellbarem Y- Pendelsatz mit transparenter Zuleitung L: 1000mm sowie Deckenbaldachin.



monsun 1 Lightcone UGR <19

Artikelnummer	W	L
4310.310.01.*	47W	1300mm
4310.310.02.*	58W	1580mm

monsun 1 opal

Artikelnummer	W	L
4310.311.01.*	47W	1300mm
4310.311.02.*	58W	1580mm

direkt/indirekt

Artikelnummer 4310.310.01.1 Vorschaltgerät 3 EVG 5 DALI

	<u>25] </u>	lightco	ne	opal	
	Lichtfarbe	47W	58W	47W	58W
*	1 = 3000K	5675lm	6900lm	6020lm	7320lm
*	2 = 4000K	5930lm	7210lm	6290lm	7650lm

Ausstattungsvarianten:

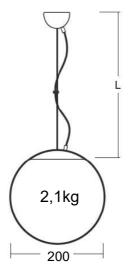
Datenblatt

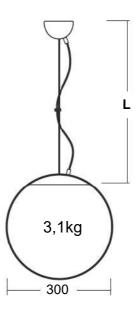
Lichtfarben:	3000K, 4000K, 6500K				
Treiber	ON/OFF, DALI				
Farbwiedergabe	CRI>80, CRI>90				
Notlichtakku:	Ja				
Datenblatt: www.monos.de/D24.067REV00					

bal Pendelleuchte

monos LED Pendelleuchte bal 200/ 300 bestückt mit LED 3000K warmweiß oder 4000K neutral-weiß, EVG, Seilpendel L: 2000mm, Deckenbaldachin und Armatur wahlweise in den Farben weiß, messing, chrom oder chrom-matt, kugelförmige Leuchtenabdeckung aus mundgeblasenem, satiniertem Triplexglas.

Weiß= W


Chrom= C



Messing= M

Chrom, matt= CM

Beispiel:

BalLED 200, 4000K, Deckenbaldachin und Armatur in Messing = 9360.011.01.2M

Stabpendel auf Anfrage

bal 200 EVG

Artikelnummer	W
9360.011.01.*	10W

bal 300 EVG

Artikelnummer W 9360.021.02.* 24W

Bei Bestellung den jeweiligen Farbcode (W, M, C oder CM) hinter der Artikelnummer einfügen.

Artikelnummer 9360.011.01.1W

Vorschaltgerät
3 EVG

	Lichtfarbe	10W	24W
*	1 = 3000K	475lm	1845lm
*	2 = 4000K	535lm	1970lm

Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.068REV00

bal Pendelleuchte

monos LED Pendelleuchte bal 400/ 500 / 600 bestückt mit LED 3000K warmweiß oder 4000K neutral-weiß, EVG, Seilpendel L: 2000mm, Deckenbaldachin und Armatur wahlweise in den Farben weiß, messing, chrom oder chrommatt, kugelförmige Leuchtenabdeckung aus mundgeblasenem, satiniertem Triplexglas.

Weiß= W

Messing= M

Chrom= C

Chrom, matt= CM

bal 600
EVG
Artikelnummer W
9360.053.06.* 53W

W

42W

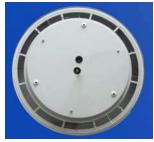
Stabpendel auf Anfrage

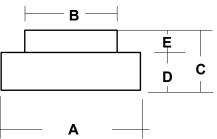
bal 400 und bal 500 in Polyethylen(PE) lieferbar

Bei Bestellung den jeweiligen Farbcode (W, M, C oder CM) hinter der Artikelnummer einfügen. Beispiel:

bal 500, 4000K, 2-fach schaltbar, Deckenbaldachin und Armatur in Chrom = **9360.042.05.2C**

	Lichtfarbe	32W	42W	53W
*	1 = 3000K	2460lm	3560lm	4365lm
*	2 = 4000K	2630lm	3935lm	4670lm





radius A - Anbauleuchte direkt/ indirekt

(10%), Farbe silbergrau (andere RAL Farben auf Anfrage), opale Abdeckung Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 100mm.

monos LED Anbauleuchte **radius A**, direkt/indirekt strahlend, 2 stufiges Gehäuse aus Aluminium und Stahlblech zur Erzeugung einer dekorativen, indirekten Lichtkorona

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	D	Е
005.0001.0196	DALI	12	1104	4000	80	Opal	UGR<19	250	150	100	81	19
005.0001.0197	DALI	23	2207	4000	80	Opal	UGR<19	350	250	100	81	19
005.0001.0198	DALI	35	3311	4000	80	Opal	UGR<19	450	360	100	81	19
005.0001.0199	DALI	59	5619	4000	80	Opal	UGR<19	600	450	100	81	19
005.0001.0200	DALI	74	7023	4000	80	Opal	UGR<19	650	450	100	81	19
005.0001.0201	DALI	105	10032	4000	80	Opal	UGR<19	900	650	100	81	19
005.0001.0220	DALI	12	1443	4000	80	Mikroprisma	UGR<19	250	150	100	81	19
005.0001.0221	DALI	23	2886	4000	80	Mikroprisma	UGR<19	350	250	100	81	19
005.0001.0222	DALI	35	4329	4000	80	Mikroprisma	UGR<19	450	350	100	81	19
005.0001.0223	DALI	59	7347	4000	80	Mikroprisma	UGR<19	600	450	100	81	19
005.0001.0224	DALI	74	9184	4000	80	Mikroprisma	UGR<19	650	450	100	81	19
005.0001.0225	DALI	105	13119	4000	80	Mikroprisma	UGR<19	900	650	100	81	19

Option - Optik Edelrost www.monos.de/D24.072REV00

Option -Optik Kupfer

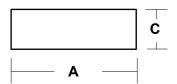
Kupferoptik: www.monos.de/D24.073REV00

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.074REV00



radius A low - Anbauleuchte direkt strahlend

monos LED Anbauleuchte radius A - low, direkt strahlend, Gehäuse aus Aluminium und Stahlblech silbergrau (andere RAL Farben auf Anfrage), Abdeckung Transluszenz optimiert für LED, gehalten im Bajonettrahmen, H: 82mm

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	Blendung	Α	С
005.0001.0153	DALI	12	1104	4000	80	Opal	UGR<22	250	82
005.0001.0154	DALI	23	2207	4000	80	Opal	UGR<22	350	82
005.0001.0155	DALI	35	3311	4000	80	Opal	UGR<22	450	82
005.0001.0156	DALI	59	5619	4000	80	Opal	UGR<22	600	82
005.0001.0157	DALI	74	7023	4000	80	Opal	UGR<22	650	82
005.0001.0290	DALI	105	10032	4000	80	Opal	UGR<22	900	82
005.0001.0173	DALI	12	1443	4000	80	Mikroprisma	UGR<19	250	82
005.0001.0174	DALI	23	2886	4000	80	Mikroprisma	UGR<19	350	82
005.0001.0175	DALI	35	4329	4000	80	Mikroprisma	UGR<19	450	82
005.0001.0176	DALI	59	7347	4000	80	Mikroprisma	UGR<19	600	82
005.0001.0177	DALI	74	9184	4000	80	Mikroprisma	UGR<19	650	82
005.0001.0294	DALI	105	13119	3000	80	Mikroprisma	UGR<19	900	82

Option - Optik Edelrost

www.monos.de/D24.072REV00

Option -Optik Kupfer

Kupferoptik: www.monos.de/D24.073REV00

Datenblatt

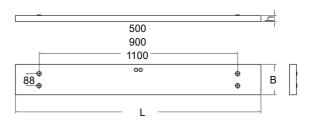
Ausstattungsvarianten:

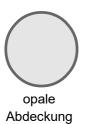
Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.075REV00

super slim 160 Anbauleuchte

Opal H:40mm


monos extra flache LED Anbauleuchte s**uper slim 160,** , EVG, Lichtfarbtoleranz MacAdam 3, Ra>80, Gehäuse aus Stahlblech, mit opaler Abdeckung oder 65° Mikroprisma in Lightconetechnik, **IP40.**


Opal	
Artikelnummer	W
5310.302.08.*	17W
5310.303.08.*	32W
5310 304 08 *	4014

Mikroprisma	
Artikelnummer	W
5310.302.06.*	17W
5310.303.06. *	32W
5310.304.06.*	40W

Maße

17W = L: 690mm x B: 160mm x H: 40mm 32W = L:1250mm x B: 160mm x H: 40mm 40W = L:1530mm x B: 160mm x H: 40mm

	Opal		Mikroprisma				
	Lichtfarbe	17W	32W	40W	17W	32W	40W
*	1= 3000K	1780lm	3280lm	3930lm	1635lm	3015lm	3705lm
*	2 = 4000K	1860lm	3430lm	4110lm	1710lm	3150lm	3870lm

Datenblatt

Datenhlatt: www mo	onos de/D24 078RFV00
Notlichtakku:	Nein
Farbwiedergabe	CRI>80, CRI>90
Treiber	ON/OFF, DALI
Lichtfarben:	3000K, 4000K, 6500K

W

17W

27W

32W

53W

40W

65W

W

17W

27W

32W

53W

40W

65W

Mikroprisma

ArtikeInummer 5310.305.06.*

5310.306.06.*

5310.307.06.*

5310.308.06.*

5310.309.06.*

5310.310.06.*

Artikelnummer

5310.305.08.*

5310.306.08.*

5310.307.08.*

5310.308.08.*

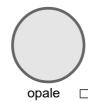
5310.309.08.*

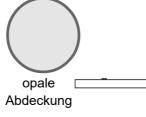
5310.310.08*

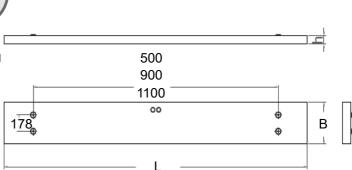
opal

super slim 250 Anbauleuchte

H:40mm


monos extra flache LED Anbauleuchte, super slim 250 CDP, Lichtfarbtoleranz MacAdam 3, EVG, Ra>80, Gehäuse aus Stahlblech, opale Abdeckung oder 65° Mikroprisma Lightconetechnik, IP40,

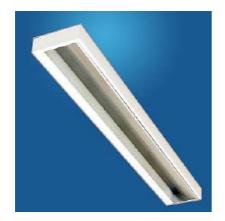

Maße

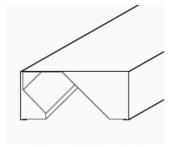

17W =	L: 690mm x B: 250mm x H: 40mm
27W =	L: 690mm x B: 250mm x H: 40mm
32W =	L:1250mm x B: 250mm x H: 40mm
53W =	L:1250mm x B: 250mm x H: 40mm
40W =	L:1530mm x B: 250mm x H: 40mm
65W =	L:1530mm x B: 250mm x H: 40mm

Mikroprisma

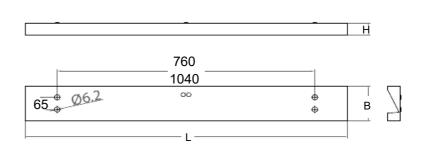
Artikelnummer 5310.305.06.1 Vorschaltgerät 3 EVG 5 Dali

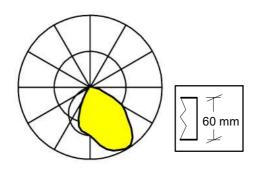
	Lichtfarbe	17W	27W	32W	40W	53W	65W
*	1= 3000K	1820lm	2875lm	3545lm	4215m	5365lm	6920lm
*	2 = 4000K	1900lm	3005lm	3700lm	4405lm	5605lm	7230lm
Opal							
	Lichtfarbe	17W	27W	32W	40W	53W	65W
*	1 = 3000K	2070lm	3265lm	4025lm	4790lm	6095lm	7490lm
*	2 = 4000K	2165lm	3415lm	4205lm	5005lm	6370lm	7830lm





slim asym Anbauleuchte





EVG	
Artikelnummer	W
5310.301.05.*	32W
5310.302.05. *	39W

monos LED Anbauleuchte slimLED asymmetrisch, Lichtfarbtoleranz MacAdam 3, EVG, CRI80, Gehäuse aus Feinblech pulverbeschichtet in Farbe weiß, Reflektor asymmetrisch aus Reinstaluminium in Hochglanzoptik.

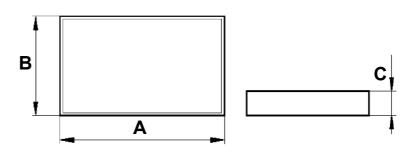
32W = L: 1188mm x B: 175mm 39W = L: 1468mm x B: 175mm

	Lichtfarbe	32W	39W
*	1 = 3000K	3095lm	3415lm
*	2 = 4000K	3260lm	3595lm

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.079REV00



Capella A Lichtband Anbauleuchte

monos LED Lichtband Anbauleuchte Capella A, , EVG, CRI>80, L80/B10-50.000h, Doppel-Parabolraster aus Reinstaluminium mit durchlaufender Optik, UGR<16 – UGR >19, für Bildschirmarbeitsplätze geeignet, rechteckiges Gehäuse aus Feinblech pulverbeschichtet in Farbe Weiss, als End- oder Mittelmodul, inklusive Längsverbinder zum Verbinden von Leuchten, Systemeffizienz bis 138Im/W.

Endmodule B: 130mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	Kg
010.0001.0103	DALI	15	2070	4000	80	Parabolraster	<16	1145	130	60	3
010.0001.0104	DALI	29	3640	4000	80	Parabolraster	<16	1145	130	60	3
010.0001.0105	DALI	18	2375	4000	80	Parabolraster	<16	1425	130	60	4
010.0001.0106	DALI	27	3500	4000	80	Parabolraster	<16	1425	130	60	4
010.0001.0107	DALI	50	6015	4000	80	Parabolraster	<19	1425	130	60	4

Mittelmodule B: 130mm

	Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	Kg
(010.0001.0123	DALI	15	2070	4000	80	Parabolraster	<16	1130	130	60	3
(010.0001.0124	DALI	29	3640	4000	80	Parabolraster	<16	1130	130	60	3
(010.0001.0125	DALI	18	2375	4000	80	Parabolraster	<16	1410	130	60	4
(010.0001.0126	DALI	27	3500	4000	80	Parabolraster	<16	1410	130	60	4
(010.0001.0127	DALI	50	6015	4000	80	Parabolraster	<19	1410	130	60	4

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
	I-/DO4 000DE\/00

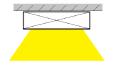
Capella A Lichtband Anbauleuchte

Endmodule B:230mm

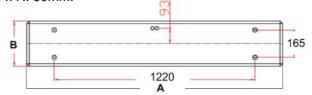
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	Kg
010.0001.0149	DALI	15	2070	4000	80	Parabolraster	<16	585	230	60	3
010.0001.0150	DALI	28	3725	4000	80	Parabolraster	<16	1145	230	60	4
010.0001.0151	DALI	38	4955	4000	80	Parabolraster	<16	1145	230	60	4
010.0001.0152	DALI	57	7110	4000	80	Parabolraster	<18	1145	230	60	4
010.0001.0153	DALI	37	4895	4000	80	Parabolraster	<16	1425	230	60	8
010.0001.0154	DALI	55	7025	4000	80	Parabolraster	<16	1425	230	60	8
010.0001.0155	DALI	75	9180	4000	80	Parabolraster	<18	1425	230	60	8

Mittelmodule B:230mm

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Blendung	Α	В	С	Kg
010.0001.0177	DALI	15	2070	4000	80	Parabolraster	<16	585	230	60	3
010.0001.0178	DALI	28	3725	4000	80	Parabolraster	<16	1130	230	60	4
010.0001.0179	DALI	38	4955	4000	80	Parabolraster	<16	1130	230	60	4
010.0001.0180	DALI	57	7110	4000	80	Parabolraster	<18	1130	230	60	4
010.0001.0181	DALI	37	4895	4000	80	Parabolraster	<16	1410	230	60	8
010.0001.0182	DALI	55	7025	4000	80	Parabolraster	<16	1410	230	60	8
010.0001.0183	DALI	75	9180	4000	80	Parabolraster	<18	1410	230	60	8



sport Mikro - ultraflache Aufbauleuchte



monos LED Aufbauleuchte sport Mikro, wahlweise Einzelleuchte, Endmodul mit einseitiger Verschraubung und Kabeldurchführung oder als Mittelmodul mit beidseitiger Verschraubung und Kabeldurchführung zur Lichtbandmontage, Lichtverteilung direkt strahlend, ballwurfsicher gemäß DIN18032, 96W, 11520lm, 4000K, Systemeffizienz 120lm/W, CRI>80, L80/B10 bei 50.000h, Lichtfarbtoleranz MacAdam 3 (3 SDCM), rechteckiges Gehäuse aus Feinblech, pulverbeschichtet in Farbe Weiss, mittig im Leuchtenboden angebracht 2 Bohrungen nach Vorgabe des Bauherrn, Lichtlenkung mittels opalisierte Mikroprismenscheibe aus Polycarbonat, diese eingefasst in einen Rahmen mit Sicherheitsverschraubung. Maße L: 1500mm x B: 200 x H: 60mm.

Sicherheitsverschraubung

Endmodul	Mittelmo	modul Mittelmodul				Mittelmodul Endmo			
Endmodul									
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Α	В	С
010.0001.0632	DALI	96	11520	4000	80	Mikroprisma	1500	200	60
Mittelmodul									
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	Α	В	С
010.0001.0634	DALI	96	11520	4000	80	Mikroprisma	1500	200	60
Einzelleuchte									
Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	Α	В	С
010.0001.0670	DALI	96	11520	4000	80	Mikroprisma	1500	200	60
						·			

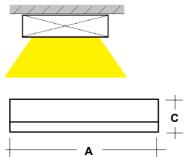
Seilpendel

Artikelnummer Beschreibung

0001.0456 1 Paar Y-Seilpendel L: 2500mm

 Höhenverstellung durch Schnellverschlüsse

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Nein
Datenblatt: www.mon	os.de/D24.046REV00



disco Aufbauleuchte IP54 optional mit Bewegungsmelder

monos LED Aufbauleuchte disco, Ra>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10, 50.000h, IP54, für Umgebungstemperaturen von -20°C bis +35°C, weißes Gehäuse aus Stahlblech und Aluminium und UV- beständige opale Wanne aus Polycarbonat, IK10, die Wanne gehalten durch Bajonettverschluss, optional mit Bewegungsmelder.

Bewegungsmelder

HF Sensor 5,8GHz-CW Radar-ISM Band Zum Leuchteneinbau Erfassungsradius 360° Erfassungsbereich einstellbar 2-16m Nachlaufzeit einstellbar 8 Sekunden – 12 Minuten

Ohne Bewegungsmelder DALI

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	UGR<	Farbe	Α	С	Kg
005.0001.2784	DALI	20	2100	4000	80	0,90	Opal	23	Weiss	400	69	3,5
005.0001.2073	DALI	25	2645	4000	80	0,90	Opal	23	Weiss	400	69	3,5
005.0001.2074	DALI	29	2970	4000	80	0,90	Opal	23	Weiss	400	69	3,5
005.0001.2075	DALI	35	3360	4000	80	0,90	Opal	23	Weiss	400	69	3,5

Mit Bewegungsmelder DALI

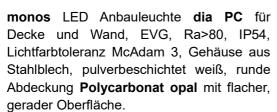
Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	UGR<	Farbe	Α	С	Kg
005.0001.2788	DALI+RS	20	2100	4000	80	0,90	Opal	23	Weiss	400	69	3,5
005.0001.2523	DALI+RS	25	2645	4000	80	0,90	Opal	23	Weiss	400	69	3,5
005.0001.2524	DALI+RS	29	2970	4000	80	0,90	Opal	23	Weiss	400	69	3,5
005.0001.2525	DALI+RS	35	3360	4000	80	0,90	Opal	23	Weiss	400	69	3,5

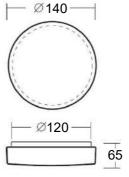
Datenblatt

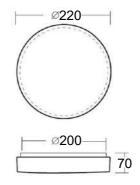
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: www.monos.de/D24.047REV00






dia PC Anbauleuchte

dia PC 140 Artikelnummer W 4360.001.40.* 5W

dia PC 220 Artikelnummer W 4360.001.41.* 9W

> Artikelnummer 4360.001.40.1 Vorschaltgerät 3 EVG 5 Dali

 Lichtfarbe
 5W
 9W

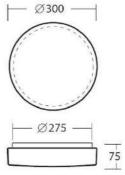
 1= 3000K
 460lm
 800lm

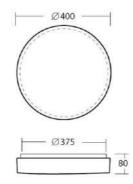
 2= 4000K
 480lm
 840lm

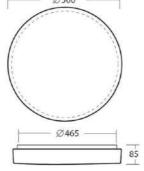
Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.085REV00




dia PC Anbauleuchte


dia PC 300
Artikelnummer W
4360.001.24.* 15W
4360.001.25.* 20W

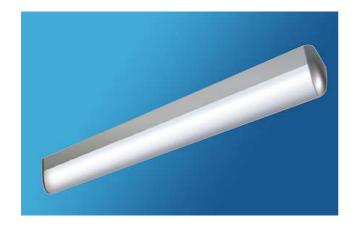
monos LED Anbauleuchte dia PC, für Decke und Wand, EVG, Ra>80, IP54, Lichtfarbtoleranz MacAdam 3, Gehäuse aus Stahlblech, pulverbeschichtet weiß, runde Abdeckung Polycarbonat opal mit flacher, gerader Oberfläche.

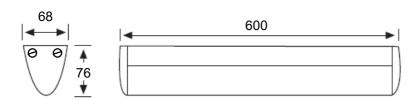
dia PC 400
Artikelnummer W
4360.002.24.* 28W
4360.002.28.* 36W

dia PC 500 Artikelnummer W Treiber CCT 060 0001 0092 35 EVG 3000

Aitikemamilei	••	HUIDUI	001
060.0001.0092	35	EVG	3000
060.0001.0093	35	EVG	4000
060.0001.0094	35	DALI	3000
060.0001.0095	35	DALI	4000

Artikelnummer	W	Treiber	CCT
060.0001.0088	53	EVG	3000
060.0001.0089	53	EVG	4000
060.0001.0090	53	DALI	3000
060.0001.0091	53	DALI	4000


Lichtfarbe	15W	20W	28W	35W	36W	53W
1 = 3000K	1480lm	1920lm	2580lm	3140lm	3400lm	4470lm
2 = 4000K	1560lm	2000lm	2720lm	3310lm	3550lm	4720lm



mirro P Anbau-Spiegelleuchte

monos LED Anbauleuchte, **mirro P**, EVG, Ra>80, Gehäuse aus Aluminium, Abdeckung opal **IP44**, Endkappen silber,

mirro P		
Artikelnummer	W	
5305.003.01.*	15W	
5305.003.02. *	29W	

Artikelnummer 5305.003.01.1 Vorschaltgerät 3 EVG

	Lichtfarbe	15W	29W
k	1= 3000K	1005lm	2330lm
k	2 = 4000K	1060lm	2445lm

Ausstattungsvarianten:

Datenblatt

Detarblett: WWW mones de/D24 077REV00			
Notlichtakku:	Nein		
Farbwiedergabe	CRI>80, CRI>90		
Treiber	ON/OFF, DALI		
Lichtfarben:	3000K, 4000K, 6500K		

Optik Kupfer- Patina

monos Optik Kupfer-Patina für Leuchten mit Feinblechgehäuse bigSky A mit direkter und direkt/indirekter Lichtverteilung. Für alle Durchmesser von 250mm bis 1200mm. Was sonst nur mit Kupferoberflächen möglich ist, ermöglicht dieses spezielle Verfahren auch für Stahlblechoberflächen.

Die Veredelung der Oberfläche zu einer Kupfer-Patina Damit erhält jede Leuchte ein ähnliches aber doch individuelles Aussehen.

Ähnlich aber doch individuell

Artikelnummer	Beschreibung
0001.0317	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 250mm
0001.0318	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 350mm
0001.0319	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 450mm
0001.0320	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 600mm
0001.0321	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 900mm
0001.0322	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 1100mm
0001.0323	Aufpreis Kupfer-Patina für Leuchten mit Feinblechgehäuse D: 1200mm

bigSky A d/i

bigSky A direkt

Datenblatt: www.monos.de/D24.073REV00

Optik Edelrost

monos Optik Edelrost für alle Leuchten der Serien radius A und atria. Die Leuchtengehäuse werden zunächst in brauner Farbe grundiert. Anschließend wird die Edelrostbeschichtung mit einer Bürste aufgetragen. Da dies in Handarbeit erfolgt, erhält jede Leuchte ein ähnliches aber doch individuelles Aussehen.

Mehrpreis für Oberfläche Edelrost

radius A - direkt + direkt indirekt		
0001.0476	bigSky A direkt + direkt indirekt D:	250mm
0001.0477	bigSky A direkt + direkt indirekt D:	350mm
0001.0478	bigSky A direkt + direkt indirekt D:	450mm
0001.0479	bigSky A direkt + direkt indirekt D:	600mm
0001.0480	bigSky A direkt + direkt indirekt D:	650mm
0001.0481	bigSky A direkt + direkt indirekt D:	900mm
0001.0482	bigSky A direkt + direkt indirekt D:	1200mm

atria 800 und atria 450

0001.0716

Andere Leuchten auf Anfrage!

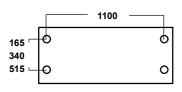
Edelrostbeschichtung wird mit einer Bürste aufgetragen. Sichtbare Unterschiede in der Beschichtung sind beabsichtigt.

Datenblatt: www.monos.de/D24.072REV00

Industrie - und Antivandalenleuchten

Montagehöhe bis 8m high-Bay Hallenleuchte

monos LED Hallenleuchte high-Bay, mit breitstrahlendem Hochleistungsreflektor Montagehöhen EVG. bis 8m. Lichtfarbtoleranz MacAdam 3, LED sichtbar, klare PMMA Abdeckung.


Artikelnummer Hakenösen 9210.001.02 M6

Artikelnummer Klemmleiste 9210.001.01 + Abdeckung

Befestigungspunkte

4000K 91W IP40/65 13065Im	91W	127W	183W	214W		
IP40/65	13065lm	18630lm	26130lm	31020lm		

IP40 - Höhe 60mm

Artikelnummer	W	Breite Länge
8310.301.07.2	91W	245 x 1220mm
8310.303.07.2	127W	420 x 1220mm
8310.304.07.2	183W	420 x 1220mm
8310.306.07.2	214W	595 x 1220mm

IP65 - Höhe 60mm

Artikelnummer	W	Breite Länge
8310.301.19.2	91W	245 x 1220mm
8310.303.19.2	127W	420 x 1220mm
8310.304.19.2	183W	420 x 1220mm
8310.306.19.2	214W	595 x 1220mm

breitstrahlend

Auf Anfrage:

Artikelnummer Montageset 9210.001.03 für **gerade** Decken

Artikelnummer Montageset 9210.001.04

für schräge Decken

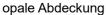
Artikelnummer 8310.301.07.2

> Vorschaltgerät 3 EVG 5 Dali

Datenblatt

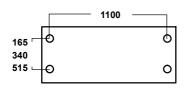
Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K ON/OFF, DALI Treiber Farbwiedergabe CRI>80, CRI>90 Notlichtakku: Ja Datenblatt: www.monos.de/D24.093REV00



Montagehöhe bis 8m high-Bay Hallenleuchte

monos LED Hallenleuchte high-Bay, mit breitstrahlendem Hochleistungsreflektor für Montagehöhen bis EVG, Licht-8m, farbtoleranz MacAdam 3, **LED** abgedeckt mit opalem Blendschutz.



breitstrahlend

Artikelnummer Hakenösen 9210.001.02 M6

Befestigungspunkte

4000K	91W	183W	214W
IP40/65	11625lm	23255lm	27605lm

IP40 - Höhe 60mm

Artikelnummer	W	Breite Länge
8310.301.09.2	91W	245 x 1220mm
8310.304.09.2	183W	420 x 1220mm
8310.306.09.2	214W	595 x 1220mm

IP65 - Höhe 60mm

Artikelnummer	W	Breite Länge
8310.301.21.2	91W	245 x 1220mm
8310.304.21.2	183W	420 x 1220mm
8310.306.21.2	214W	595 x 1220mm

Auf Anfrage:

Artikelnummer Montageset 9210.001.03 für **gerade** Decken

Artikelnummer Montageset 9210.001.04

für schräge Decken

Artikelnummer Klemmleiste 9210.001.01 + Abdeckung

Artikelnummer

8310.301.09.2

Vorschaltgerät

3 EVG 5 Dali

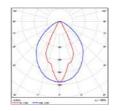
Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K Treiber ON/OFF, DALI Farbwiedergabe CRI>80, CRI>90 Notlichtakku:

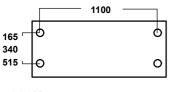
Ja

Datenblatt: www.monos.de/D24.094REV00


Montagehöhe bis 8 - 16m high-Bay Hallenleuchte

monos LED Hallenleuchte high-Bay, mit tief- breitstrahlendem Hochleistungsreflektor für Montagehöhen 8 - 16m, EVG, Lichtfarbtoleranz MacAdam 3, LED sichtbar, klare PMMA Abdeckung.

LED sichtbar



tief- breitstrahlend

Artikelnummer Hakenösen 9210.001.02 M6

Befestigungspunkte

4000K	91W	127W	183W	214W
IP40/65	13260lm	18910lm	26520lm	31585lm

IP40 - Höhe 60mm

Artikelnummer	W	Breite Länge
8310.301.10.2	91W	245 x 1220mm
8310.303.10.2	127W	420 x 1220mm
8310.304.10.2	183W	420 x 1220mm
8310.306.10.2	214W	595 x 1220mm

IP65 - Höhe 60mm

Artikelnummer	W	Breite Länge
8310.301.22.2	91W	245 x 1220mm
8310.303.22.2	127W	420 x 1220mm
8310.304.22.2	183W	420 x 1220mm
8310.306.22.2	214W	595 x 1220mm

Auf Anfrage:

Artikelnummer Montageset 9210.001.03 für **gerade** Decken

Artikelnummer Montageset

9210.001.04 für **schräge** Decken

Artikelnummer Klemmleiste 9210.001.01 + Abdeckung

Artikelnummer

8310.301.04.2

Vorschaltgerät

-3 EVG

5 Dali

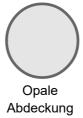
Ausstattungsvarianten:

Datenblatt

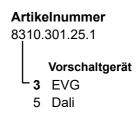
Lichtfarben: 3000K, 4000K, 6500K ON/OFF, DALI Treiber Farbwiedergabe CRI>80, CRI>90

Notlichtakku: Ja

Datenblatt: www.monos.de/D24.095REV00



simp Anbau-Lichtleiste


simp 1
Artikelnummer W
8310.301.25.* 36W
8310.302.25.* 44W

monos LED Anbau Lichtleiste, simp 1 EVG, CRI>80, Lichtfarbtoleranz MacAdam 3. Gehäuse aus Stahlblech pulverbeschichtet in Farbe weiß, Abdeckung opal, **IP40**. B: 96mm x H: 54mm.

Maße

36W L: 1131mm x B: 96mm x H: 54mm 44W L: 1411mm x B: 96mm x H: 54mm

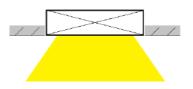
Opal

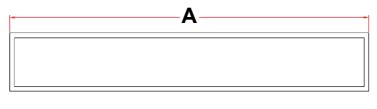
Lichtfarbe	36W	44W
* 1= 3000K	4605lm	5795lm
* 2= 4000K	4850lm	6100lm
* 3= 6500K	4850lm	6100lm

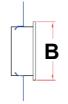
Ausstattungsvarianten:

Datenblatt

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D24.096REV00






sita E - antivandal Einbauleuchte

monos antivandal LED Leuchte sita E, Bauform rechteckig zur Einbaumontage, EVG, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 - 50.000h, schlagfestes Stahlblechgehäuse in Farbe Weiss und ebenfalls schlagfeste Polycarbonatabdeckung opal, verschlossen mit Sicherheitsschrauben, IK10, Schutzart IP54.

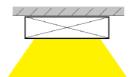
Ţ	T	C

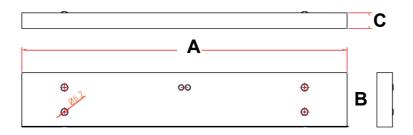
Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С	D	Е	Kg	IP
010.0001.0456	DALI	17	1529	4000	80	0,9	Opal	< 23	Weiss	685	200	85	665	180	4	54
010.0001.0457	DALI	32	2817	4000	80	0,9	Opal	< 24	Weiss	1245	200	85	1225	180	6	54
010.0001.0458	DALI	40	3461	4000	80	0,9	Opal	< 25	Weiss	1545	200	85	1525	180	7	54

Datenblatt

Ausstattungsvarianten:

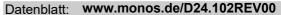
Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.mo	nos.de/D24.100REV00





sita A - antivandal Aufbauleuchte

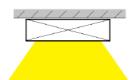
monos antivandal LED Leuchte sita A, Bauform rechteckig zur Anbaumontage, EVG, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 - 50.000h, schlagfestes Stahlblechgehäuse in Farbe Weiss und ebenfalls schlagfeste Polycarbonatabdeckung opal, verschlossen mit Sicherheitsschrauben, IK10, Schutzart IP54.

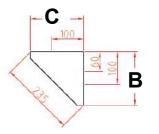

Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С	Kg	IP
010.0001.0429	DALI	17	1452	3000	80	0,9	Opal	< 23	Weiss	720	207	60	4	54
010.0001.0430	DALI	32	2676	3000	80	0,9	Opal	< 23	Weiss	1280	207	60	6	54
010.0001.0431	DALI	40	3287	3000	80	0,9	Opal	< 23	Weiss	1560	207	60	7	54
010.0001.0432	DALI	17	1529	4000	80	0,9	Opal	< 23	Weiss	720	207	60	4	54
010.0001.0433	DALI	32	2817	4000	80	0,9	Opal	< 24	Weiss	1280	207	60	6	54
010.0001.0434	DALI	40	3461	4000	80	0,9	Opal	< 25	Weiss	1560	207	60	7	54

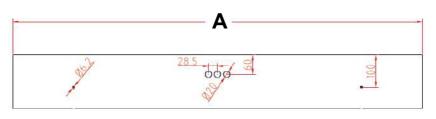
Datenblatt

Ausstattungsvarianten:

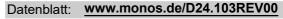
Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja






sita AT - antivandal Dreiecksleuchte zur Anbaumontage

monos antivandal LED Leuchte sita AT, Dreiecksleuchte zur Anbaumontage, EVG, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 - 50.000h, schlagfestes Stahlblechgehäuse in Farbe weiss und ebenfalls schlagfeste Polycarbonatabdeckung opal, verschlossen mit Sicherheitsschrauben, IK10, Schutzart IP54.

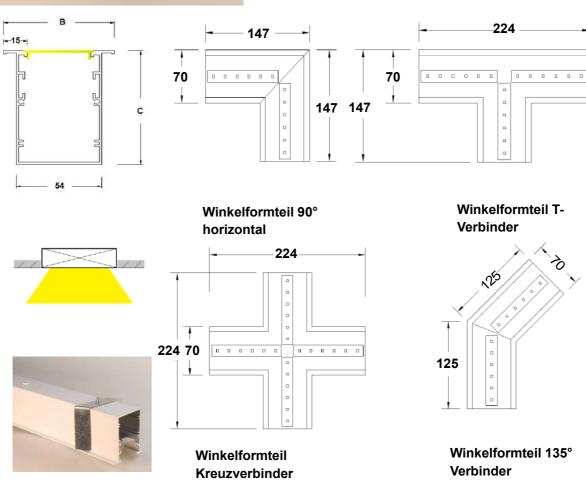


Artikelnummer	Treiber	W	LM	CCT	CRI>	PF	Optik	Blendung	Farbe	Α	В	С	Kg	IP
010.0001.0441	DALI	17	1452	3000	80	0,9	Opal	< 23	Weiss	720	166	166	5	54
010.0001.0442	DALI	32	2676	3000	80	0,9	Opal	< 23	Weiss	1280	166	166	8	54
010.0001.0443	DALI	40	3287	3000	80	0,9	Opal	< 23	Weiss	1560	166	166	10	54
010.0001.0444	DALI	17	1529	4000	80	0,9	Opal	< 23	Weiss	720	166	166	5	54
010.0001.0445	DALI	32	2817	4000	80	0,9	Opal	< 24	Weiss	1280	166	166	8	54
010.0001.0446	DALI	40	3461	4000	80	0,9	Opal	< 25	Weiss	1560	166	166	10	54

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja



felis E - Lichtkanal Einbauleuchte

monos LED Lichtkanal felis E als Einbauleuchte, Lichtverteilung rein direkt strahlend, IP20, EVG, CRI>80, Treiber in der Leuchte, LED auswechselbar, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 bei 50.000h, Farbe RAL9016 Weiss, (andere RAL Farben auf Anfrage), Abdeckung wahlweise opal oder Mikroprisma UGR<19, Endkappen und Pendelsatz separat bestellen. Ausschnittmaß B: 60mm x Länge A: + 3mm je Endkappe

Winkelformteile werden durch die anschließende Leuchte gespeist.

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja
Datenblatt: www.monos.de/D25.002REV00

felis E - Lichtkanal Einbauleuchte

Standard

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.4894	DALI	22	2.142	4000	80	OPAL	23	1020	70	75	1,93
005.0001.4896	DALI	24	2.356	4000	80	OPAL	23	1120	70	75	2,09
005.0001.4900	DALI	28	2.785	4000	80	OPAL	23	1320	70	75	2,41
005.0001.4902	DALI	30	2.999	4000	80	OPAL	23	1420	70	75	2,57
005.0001.4906	DALI	35	3.427	4000	80	OPAL	23	1620	70	75	2,89
005.0001.4908	DALI	37	3.641	4000	80	OPAL	23	1720	70	75	3,05
005.0001.4912	DALI	41	4.070	4000	80	OPAL	23	1920	70	75	3,37
005.0001.4914	DALI	43	4.284	4000	80	OPAL	23	2020	70	75	3,53
005.0001.4918	DALI	48	4.712	4000	80	OPAL	23	2220	70	75	3,85
005.0001.4920	DALI	50	4.927	4000	80	OPAL	23	2320	70	75	4,01
005.0001.4924	DALI	54	5.355	4000	80	OPAL	23	2520	70	75	4,33
005.0001.4926	DALI	56	5.569	4000	80	OPAL	23	2620	70	75	4,49
005.0001.4930	DALI	61	5.998	4000	80	OPAL	23	2820	70	75	4,81
005.0001.4932	DALI	63	6.212	4000	80	OPAL	23	2920	70	75	4,97

High Power

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.4890	DALI	23	2.249	4000	80	OPAL	23	720	70	75	1,45
005.0001.4891	DALI	26	2.570	4000	80	OPAL	23	820	70	75	1,61
005.0001.4895	DALI	32	3.213	4000	80	OPAL	23	1020	70	75	1,93
005.0001.4897	DALI	36	3.534	4000	80	OPAL	23	1120	70	75	2,09
005.0001.4901	DALI	42	4.176	4000	80	OPAL	23	1320	70	75	2,41
005.0001.4903	DALI	45	4.498	4000	80	OPAL	23	1420	70	75	2,57
005.0001.4907	DALI	52	5.140	4000	80	OPAL	23	1620	70	75	2,89
005.0001.4909	DALI	55	5.461	4000	80	OPAL	23	1720	70	75	3,05
005.0001.4913	DALI	62	6.104	4000	80	OPAL	23	1920	70	75	3,37
005.0001.4915	DALI	65	6.425	4000	80	OPAL	23	2020	70	75	3,53
005.0001.4919	DALI	71	7.068	4000	80	OPAL	23	2220	70	75	3,85
005.0001.4921	DALI	75	7.389	4000	80	OPAL	23	2320	70	75	4,01
005.0001.4925	DALI	81	8.031	4000	80	OPAL	23	2520	70	75	4,33
005.0001.4927	DALI	84	8.353	4000	80	OPAL	23	2620	70	75	4,49
005.0001.4931	DALI	91	8.995	4000	80	OPAL	23	2820	70	75	4,81
005.0001.4933	DALI	94	9.316	4000	80	OPAL	23	2920	70	75	4,97

Standard

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.5082	DALI	22	3.035	4000	80	Mikroprisma	19	1020	70	75	1,93
005.0001.5084	DALI	24	3.338	4000	80	Mikroprisma	19	1120	70	75	2,09
005.0001.5088	DALI	28	3.945	4000	80	Mikroprisma	19	1320	70	75	2,41
005.0001.5090	DALI	30	4.248	4000	80	Mikroprisma	19	1420	70	75	2,57
005.0001.5094	DALI	35	4.855	4000	80	Mikroprisma	19	1620	70	75	2,89
005.0001.5096	DALI	37	5.159	4000	80	Mikroprisma	19	1720	70	75	3,05
005.0001.5100	DALI	41	5.766	4000	80	Mikroprisma	19	1920	70	75	3,37
005.0001.5102	DALI	43	6.069	4000	80	Mikroprisma	19	2020	70	75	3,53

felis E - Lichtkanal Einbauleuchte

Standard

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg	
005.0001.5106	DALI	48	6.676	4000	80	Mikroprisma	19	2220	70	75	3,85	
005.0001.5108	DALI	50	6.979	4000	80	Mikroprisma	19	2320	70	75	4,01	
005.0001.5112	DALI	54	7.586	4000	80	Mikroprisma	19	2520	70	75	4,33	
005.0001.5114	DALI	56	7.890	4000	80	Mikroprisma	19	2620	70	75	4,49	
005.0001.5118	DALI	61	8.497	4000	80	Mikroprisma	19	2820	70	75	4,81	
005.0001.5120	DALI	63	8.800	4000	80	Mikroprisma	19	2920	70	75	4,97	

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.5078	DALI	23	3.186	4000	80	Mikroprisma	19	720	70	75	1,45
005.0001.5079	DALI	26	3.641	4000	80	Mikroprisma	19	820	70	75	1,61
005.0001.5083	DALI	32	4.551	4000	80	Mikroprisma	19	1020	70	75	1,93
005.0001.5085	DALI	36	5.006	4000	80	Mikroprisma	19	1120	70	75	2,09
005.0001.5089	DALI	42	5.916	4000	80	Mikroprisma	19	1320	70	75	2,41
005.0001.5091	DALI	45	6.371	4000	80	Mikroprisma	19	1420	70	75	2,57
005.0001.5095	DALI	52	7.282	4000	80	Mikroprisma	19	1620	70	75	2,89
005.0001.5097	DALI	55	7.737	4000	80	Mikroprisma	19	1720	70	75	3,05
005.0001.5101	DALI	62	8.647	4000	80	Mikroprisma	19	1920	70	75	3,37
005.0001.5103	DALI	65	9.102	4000	80	Mikroprisma	19	2020	70	75	3,53
005.0001.5107	DALI	71	10.012	4000	80	Mikroprisma	19	2220	70	75	3,85
005.0001.5109	DALI	75	10.467	4000	80	Mikroprisma	19	2320	70	75	4,01
005.0001.5113	DALI	81	11.378	4000	80	Mikroprisma	19	2520	70	75	4,33
005.0001.5115	DALI	84	11.833	4000	80	Mikroprisma	19	2620	70	75	4,49
005.0001.5119	DALI	91	12.743	4000	80	Mikroprisma	19	2820	70	75	4,81
005.0001.5121	DALI	94	13.198	4000	80	Mikroprisma	19	2920	70	75	4,97

Winkelformteile

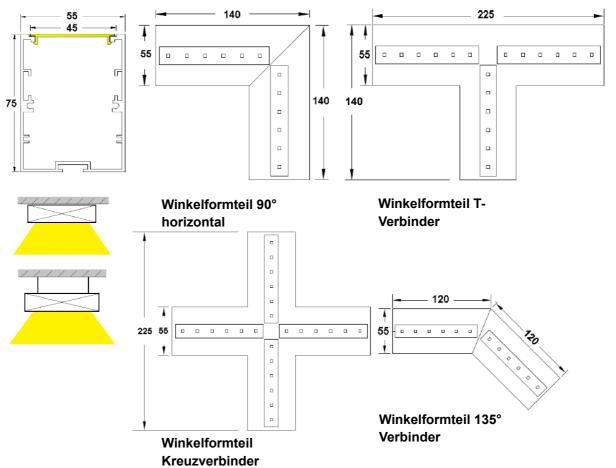
Standard

Artikelnummer	Verbinder	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0871	90°	4,3	607	4000K	80	Mikroprisma	19	147x147	70	75	0,60
0001.0873	135°	4,3	607	4000K	80	Mikroprisma	19	125x125	70	75	0,60
0001.0875	Т	6,5	910	4000K	80	Mikroprisma	19	224x147	70	75	1,00
0001.0877	Χ	8,7	1.214	4000K	80	Mikroprisma	19	224x224	70	75	1,20

High Power

Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0872	90°	6,5	910	4000K	80	Mikroprisma	19	147x147	70	75	0,60
0001.0874	135°	6,5	910	4000K	80	Mikroprisma	19	125x125	70	75	0,60
0001.0876	Т	9,7	1.365	4000K	80	Mikroprisma	19	224x147	70	75	1,00
0001.0878	Χ	13,0	1.820	4000K	80	Mikroprisma	19	224x224	70	75	1,20

Artikelnummer	Beschreibung	Α	В	С
0001.0879	monos felis E Endkappe in Profilfarbe			
0001.0880	monos felis E Längsverbinder			
0001.0881	monos felis E Leerprofil			
	mit Abdeckung je laufender Meter	1000	70	75

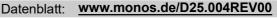


felis A - Lichtkanal Anbau oder Pendelleuchte - direkt

monos LED Lichtkanal felis A als Anbau- oder Pendelleuchte, Lichtverteilung rein direkt strahlend, DALI, CRI>80, Treiber in der Leuchte, LED auswechselbar, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 bei 50.000h, Farbe RAL9016 Weiss, (andere RAL Farben auf Anfrage), Abdeckung wahlweise opal oder Mikroprisma UGR<19, Endkappen und Pendelsatz separat bestellen.

Winkelformteile werden durch die anschließende Leuchte gespeist.

Option Wandmontage: www.monos.de/D25.011REV00


Option Stromschiene: www.monos.de/D25.012REV00

Datenblatt

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

felis A - Lichtkanal Anbau oder Pendelleuchte - direkt

Standard

Artikelnummer	Treiber	W	LM	CCT	UGR < C	RI>	Optik	Α	В	С	Kg
005.0001.4516	DALI	20	1.928	4000	23	80	OPAL	920	55	75	1,77
005.0001.4526	DALI	30	2.999	4000	23	80	OPAL	1420	55	75	2,57
005.0001.4536	DALI	41	4.070	4000	23	80	OPAL	1920	55	75	3,37
005.0001.4554	DALI	61	5.998	4000	23	80	OPAL	2820	55	75	4,81

High Power

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4513	DALI	20	1.928	4000	23	80	OPAL	620	55	75	1,29
005.0001.4521	DALI	36	3.534	4000	23	80	OPAL	1120	55	75	2,09
005.0001.4531	DALI	52	5.140	4000	23	80	OPAL	1620	55	75	2,89
005.0001.4541	DALI	68	6.746	4000	23	80	OPAL	2120	55	75	3,69

Standard

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4704	DALI	20	2.731	4000	19	80	Mikroprisma	920	55	75	1,77
005.0001.4714	DALI	30	4.248	4000	19	80	Mikroprisma	1420	55	75	2,57
005.0001.4724	DALI	41	5.766	4000	19	80	Mikroprisma	1920	55	75	3,37
005.0001.4734	DALI	52	7.283	4000	19	80	Mikroprisma	2420	55	75	4,17

High Power

Artikelnummer Ti	reiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4701	DALI	20	2.731	4000	19	80	Mikroprisma	620	55	75	1,29
005.0001.4709	DALI	36	5.006	4000	19	80	Mikroprisma	1120	55	75	2,09
005.0001.4721	DALI	55	7.737	4000	19	80	Mikroprisma	1720	55	75	3,05
005.0001.4731	DALI	71	10.012	4000	19	80	Mikroprisma	2220	55	75	3,85

felis A - Lichtkanal Anbau oder Pendelleuchte - direkt

Winkelformteile

Standard

Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0829	90°	4,5	571	3000K	80	Mikroprisma	19	140x140	55	75	0,60
0001.0831	135°	4,5	571	3000K	80	Mikroprisma	19	120x120	55	75	0,60
0001.0833	Т	6,5	857	3000K	80	Mikroprisma	19	225x140	55	75	1,00
0001.0835	X	9,0	1.142	3000K	80	Mikroprisma	19	225x225	55	75	1,20

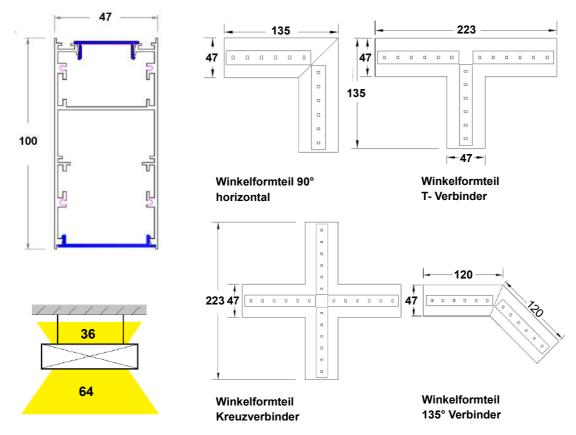
Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0837	90°	4,5	607	4000K	80	Mikroprisma	19	140x140	55	75	0,60
0001.0839	135°	4,5	607	4000K	80	Mikroprisma	19	120x120	55	75	0,60
0001.0841	Т	6,5	910	4000K	80	Mikroprisma	19	225x140	55	75	1,00
0001.0843	X	9.0	1.214	4000K	80	Mikroprisma	19	225x225	55	75	1.20

High Power

Artikelnummer	Verbinder	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0830	90°	6,5	857	3000K	80	Mikroprisma	19	140x140	55	75	0,60
0001.0832	135°	6,5	857	3000K	80	Mikroprisma	19	120x120	55	75	0,60
0001.0834	T	10,0	1.285	3000K	80	Mikroprisma	19	225x140	55	75	1,00
0001.0836	X	13,0	1.713	3000K	80	Mikroprisma	19	225x225	55	75	1,20

Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0838	90°	6,5	910	4000K	80	Mikroprisma	19	140x140	55	75	0,60
0001.0840	135°	6,5	910	4000K	80	Mikroprisma	19	120x120	55	75	0,60
0001.0842	Т	10,0	1.365	4000K	80	Mikroprisma	19	225x140	55	75	1,00
0001.0844	X	13,0	1.820	4000K	80	Mikroprisma	19	225x225	55	75	1,20

A 411 1	— · · ·
Artikelnummer	Bezeichnung
0001.0756	Monos Endkappe zu Felis A, ohne sichtbare Schrauben, 3mm x 55mm x H: 75mm
0001.0845	Monos Längsverbinder mit Abdeckung für Lichtspalte zu Felis A
0001.0248	Monos Seilpendel L: 1500mm, höhenverstellbar durch Schnellverschluß
0001.0249	Monos transparente Zuleitung 3-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0250	Monos transparente Zuleitung 5-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0846	Monos Felis A Leerprofil mit Abdeckung in Profilfarbe, je laufender Meter B:55mm x
	H: 75mm
0001.1047	Wandmontagebügel für polaris A - 2 Bügel bis L: 1720mm, 3 Bügel L > 1720mm
0001.1048	1 Paar Lichtspaltkaschierung zu polaris A, 55mm x 75mm, Clips in Profilfarbe zur Ab-
	deckung von Lichtspalten am Leuchtenstoß, werkzeuglose Anbringung von außen.



Monos LED Lichtkanal **felis P** als Pendelleuchte, Lichtverteilung 64% direkt / 36% indirekt strahlend, DALI, CRI>80, Treiber in der Leuchte, LED auswechselbar, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 bei 50.000h, Farbe RAL9016 Weiss, (andere RAL Farben auf Anfrage), obere Abdeckung opal und untere Abdeckung wahlweise opal oder Mikroprisma UGR<19, Maße L: 620mm x B:47mm x H:100mm, Endkappen und Pendelsatz separat bestellen.

Winkelformteile werden durch die anschließende Leuchte gespeist.

Option Wandmontage: www.monos.de/D25.011REV00

Ausstattungsvarianten:

Datenblatt

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	Ja
Datenblatt: www.mo	nos.de/D25.003REV00

Standard

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4116	DALI	23	2.436	4000	23	80	OPAL	720	47	100	1,60
005.0001.4118	DALI	26	2.784	4000	23	80	OPAL	820	47	100	1,78
005.0001.4122	DALI	32	3.480	4000	23	80	OPAL	1020	47	100	2,14
005.0001.4124	DALI	36	3.828	4000	23	80	OPAL	1120	47	100	2,32
005.0001.4128	DALI	42	4.524	4000	23	80	OPAL	1320	47	100	2,68
005.0001.4130	DALI	45	4.872	4000	23	80	OPAL	1420	47	100	2,86
005.0001.4134	DALI	52	5.568	4000	23	80	OPAL	1620	47	100	3,22
005.0001.4136	DALI	55	5.916	4000	23	80	OPAL	1720	47	100	3,40
005.0001.4140	DALI	62	6.612	4000	23	80	OPAL	1920	47	100	3,76
005.0001.4142	DALI	65	6.960	4000	23	80	OPAL	2020	47	100	3,94
005.0001.4146	DALI	71	7.656	4000	23	80	OPAL	2220	47	100	4,30
005.0001.4148	DALI	75	8.004	4000	23	80	OPAL	2320	47	100	4,48
005.0001.4152	DALI	81	8.701	4000	23	80	OPAL	2520	47	100	4,84
005.0001.4154	DALI	84	9.049	4000	23	80	OPAL	2620	47	100	5,02
005.0001.4158	DALI	91	9.745	4000	23	80	OPAL	2820	47	100	5,38
005.0001.4160	DALI	94	10.093	4000	23	80	OPAL	2920	47	100	5,56

High Power

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4117	DALI	38	4.060	4000	23	80	OPAL	720	47	100	1,60
005.0001.4119	DALI	43	4.641	4000	23	80	OPAL	820	47	100	1,78
005.0001.4123	DALI	54	5.801	4000	23	80	OPAL	1020	47	100	2,14
005.0001.4125	DALI	60	6.381	4000	23	80	OPAL	1120	47	100	2,32
005.0001.4129	DALI	70	7.541	4000	23	80	OPAL	1320	47	100	2,68
005.0001.4131	DALI	76	8.121	4000	23	80	OPAL	1420	47	100	2,86
005.0001.4135	DALI	87	9.281	4000	23	80	OPAL	1620	47	100	3,22
005.0001.4137	DALI	92	9.861	4000	23	80	OPAL	1720	47	100	3,40
005.0001.4141	DALI	103	11.021	4000	23	80	OPAL	1920	47	100	3,76
005.0001.4143	DALI	108	11.601	4000	23	80	OPAL	2020	47	100	3,94
005.0001.4147	DALI	119	12.762	4000	23	80	OPAL	2220	47	100	4,30
005.0001.4149	DALI	124	13.342	4000	23	80	OPAL	2320	47	100	4,48
005.0001.4153	DALI	135	14.502	4000	23	80	OPAL	2520	47	100	4,84
005.0001.4155	DALI	141	15.082	4000	23	80	OPAL	2620	47	100	5,02
005.0001.4159	DALI	151	16.242	4000	23	80	OPAL	2820	47	100	5,38
005.0001.4161	DALI	157	16.822	4000	23	80	OPAL	2920	47	100	5,56

Standard

Artikelnummer	Traibar	\A /	1 1/4	ССТ	UGR <	CDIS	Optik	Α	D	C	Ka
Artikemummer	Heibei	VV	LIVI	CCI	UGK >		Орик	A	D	C	Ny
005.0001.4316	DALI	23	2.936	4000	19	80	Mikroprisma	720	47	100	1,60
005.0001.4318	DALI	26	3.355	4000	19	80	Mikroprisma	820	47	100	1,78
005.0001.4322	DALI	32	4.194	4000	19	80	Mikroprisma	1020	47	100	2,14
005.0001.4324	DALI	36	4.614	4000	19	80	Mikroprisma	1120	47	100	2,32
005.0001.4328	DALI	42	5.452	4000	19	80	Mikroprisma	1320	47	100	2,68
005.0001.4330	DALI	45	5.872	4000	19	80	Mikroprisma	1420	47	100	2.86

Standard

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4334	DALI	52	6.711	4000	19	80	Mikroprisma	1620	47	100	3,22
005.0001.4336	DALI	55	7.130	4000	19	80	Mikroprisma	1720	47	100	3,40
005.0001.4340	DALI	62	7.969	4000	19	80	Mikroprisma	1920	47	100	3,76
005.0001.4342	DALI	65	8.388	4000	19	80	Mikroprisma	2020	47	100	3,94
005.0001.4346	DALI	71	9.227	4000	19	80	Mikroprisma	2220	47	100	4,30
005.0001.4348	DALI	75	9.647	4000	19	80	Mikroprisma	2320	47	100	4,48
005.0001.4352	DALI	81	10.486	4000	19	80	Mikroprisma	2520	47	100	4,84
005.0001.4354	DALI	84	10.905	4000	19	80	Mikroprisma	2620	47	100	5,02
005.0001.4358	DALI	91	11.744	4000	19	80	Mikroprisma	2820	47	100	5,38
005.0001.4360	DALI	94	12.163	4000	19	80	Mikroprisma	2920	47	100	5,56

High Power

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.4317	DALI	38	4.810	4000	19	80	Mikroprisma	720	47	100	1,60
005.0001.4319	DALI	43	5.497	4000	19	80	Mikroprisma	820	47	100	1,78
005.0001.4323	DALI	54	6.872	4000	19	80	Mikroprisma	1020	47	100	2,14
005.0001.4325	DALI	60	7.559	4000	19	80	Mikroprisma	1120	47	100	2,32
005.0001.4329	DALI	70	8.933	4000	19	80	Mikroprisma	1320	47	100	2,68
005.0001.4331	DALI	76	9.620	4000	19	80	Mikroprisma	1420	47	100	2,86
005.0001.4335	DALI	87	10.994	4000	19	80	Mikroprisma	1620	47	100	3,22
005.0001.4337	DALI	92	11.682	4000	19	80	Mikroprisma	1720	47	100	3,40
005.0001.4341	DALI	103	13.056	4000	19	80	Mikroprisma	1920	47	100	3,76
005.0001.4343	DALI	108	13.743	4000	19	80	Mikroprisma	2020	47	100	3,94
005.0001.4347	DALI	119	15.117	4000	19	80	Mikroprisma	2220	47	100	4,30
005.0001.4349	DALI	124	15.805	4000	19	80	Mikroprisma	2320	47	100	4,48
005.0001.4353	DALI	135	17.179	4000	19	80	Mikroprisma	2520	47	100	4,84
005.0001.4355	DALI	141	17.866	4000	19	80	Mikroprisma	2620	47	100	5,02
005.0001.4359	DALI	151	19.240	4000	19	80	Mikroprisma	2820	47	100	5,38
005.0001.4361	DALI	157	19.927	4000	19	80	Mikroprisma	2920	47	100	5,56

Winkelformteile

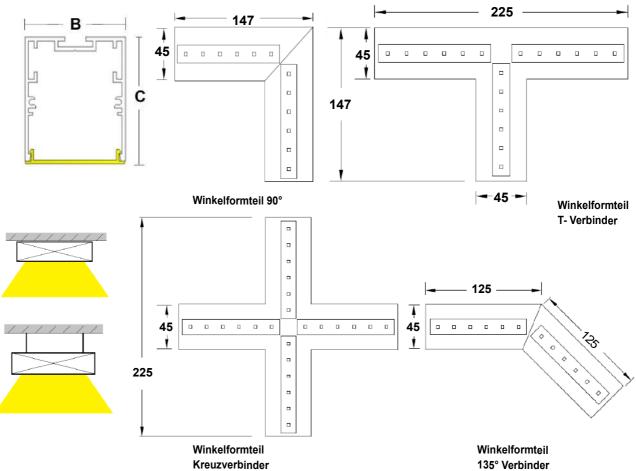
Standard

Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0898	90°	6	857	3000K	80	Mikroprisma	19	135x135	47	100	0,54
0001.0900	135°	6	857	3000K	80	Mikroprisma	19	120x120	47	100	0,48
0001.0902	T	10	1.285	3000K	80	Mikroprisma	19	223x135	47	100	0,70
0001.0904	Χ	13	1.713	3000K	80	Mikroprisma	19	223x223	47	100	0,82
Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
0001.0906	90°	6	910	4000K	80	Mikroprisma	19	135x135	47	100	0,54
0001.0908	135°	6	910	4000K	80	Mikroprisma	19	120x120	47	100	0,48
	_	4.0	4 005	400017	00	N 4:1	10	2224125	17	100	0.70
0001.0910	I	10	1.365	4000K	80	Mikroprisma	19	223x135	47	100	0,70

High Power

Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
90°	11	1.428	3000K	80	Mikroprisma	19	135x135	47	100	0,54
135°	11	1.428	3000K	80	Mikroprisma	19	120x120	47	100	0,48
T	16	2.142	3000K	80	Mikroprisma	19	223x135	47	100	0,70
Χ	22	2.856	3000K	80	Mikroprisma	19	223x223	47	100	0,82
Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
90°	11	1.517	4000K	80	Mikroprisma	19	135x135	47	100	0,54
135°	11	1.517	4000K	80	Mikroprisma	19	120x120	47	100	0,48
Т	16	2 276	4000K	80	Mikroprisma	19	223x135	47	100	0.70
•	10	2.270	100011		min opnoma			• •		0,70
	90° 135° T X Verbinder 90° 135°	90° 11 135° 11 T 16 X 22 Verbinder W 90° 11 135° 11	90° 11 1.428 135° 11 1.428 T 16 2.142 X 22 2.856 Verbinder W LM 90° 11 1.517 135° 11 1.517	90° 11 1.428 3000K 135° 11 1.428 3000K T 16 2.142 3000K X 22 2.856 3000K Verbinder W LM CCT 90° 11 1.517 4000K 135° 11 1.517 4000K	90° 11 1.428 3000K 80 135° 11 1.428 3000K 80 T 16 2.142 3000K 80 X 22 2.856 3000K 80 Verbinder W LM CCT CRI> 90° 11 1.517 4000K 80 135° 11 1.517 4000K 80	90° 11 1.428 3000K 80 Mikroprisma 135° 11 1.428 3000K 80 Mikroprisma T 16 2.142 3000K 80 Mikroprisma X 22 2.856 3000K 80 Mikroprisma Verbinder W LM CCT CRI> Optik 90° 11 1.517 4000K 80 Mikroprisma 135° 11 1.517 4000K 80 Mikroprisma	90° 11 1.428 3000K 80 Mikroprisma 19 135° 11 1.428 3000K 80 Mikroprisma 19 T 16 2.142 3000K 80 Mikroprisma 19 X 22 2.856 3000K 80 Mikroprisma 19 Verbinder W LM CCT CRI> Optik UGR < 90° 11 1.517 4000K 80 Mikroprisma 19 135° 11 1.517 4000K 80 Mikroprisma 19	90° 11 1.428 3000K 80 Mikroprisma 19 135x135 135° 11 1.428 3000K 80 Mikroprisma 19 120x120 T 16 2.142 3000K 80 Mikroprisma 19 223x135 X 22 2.856 3000K 80 Mikroprisma 19 223x223 Verbinder W LM CCT CRI> Optik UGR A 90° 11 1.517 4000K 80 Mikroprisma 19 135x135 135° 11 1.517 4000K 80 Mikroprisma 19 120x120	90° 11 1.428 3000K 80 Mikroprisma 19 135x135 47 135° 11 1.428 3000K 80 Mikroprisma 19 120x120 47 T 16 2.142 3000K 80 Mikroprisma 19 223x135 47 X 22 2.856 3000K 80 Mikroprisma 19 223x223 47 Verbinder W LM CCT CRI> Optik UGR A B 90° 11 1.517 4000K 80 Mikroprisma 19 135x135 47 135° 11 1.517 4000K 80 Mikroprisma 19 120x120 47	90° 11 1.428 3000K 80 Mikroprisma 19 135x135 47 100 135° 11 1.428 3000K 80 Mikroprisma 19 120x120 47 100 T 16 2.142 3000K 80 Mikroprisma 19 223x135 47 100 X 22 2.856 3000K 80 Mikroprisma 19 223x223 47 100 Verbinder W LM CCT CRI> Optik UGR A B C 90° 11 1.517 4000K 80 Mikroprisma 19 135x135 47 100 135° 11 1.517 4000K 80 Mikroprisma 19 120x120 47 100

Artikelnummer	Beschreibung
0001.0663	Monos Endkappe zu felis P, ohne sichtbare Schrauben, 3mm x 47mm x H: 100mm
0001.0735	Monos Längsverbinder felis P
0001.0943	Monos Seilpendel L: 1500mm, höhenverstellbar durch Schnellverschluß felis P
0001.0249	Monos transparente Zuleitung 3-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0250	Monos transparente Zuleitung 5-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.1046	Wandmontagebügel für felis P - 2 Bügel bis L: 1720mm, 3 Bügel L > 1720mm
0001.1051	1 Paar Lichtspaltkaschierung zu felis P 47mm x 100mm, Clips in Profilfarbe zur Ab-
	deckung von Lichtspalten am Leuchtenstoß, werkzeuglose Anbringung von außen.



tabit - Lichtkanal Anbau- oder Pendelleuchte

monos LED Lichtkanal tabit als Anbau- oder Pendelleuchte, CRI>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Lebensdauer 50.000h-L80/B10, Leuchtengehäuse auswechselbar, aus stranggepresstem Aluminium, pulverbeschichtet in RAL 9016 Weiss (andere RAL Farben auf Anfrage), Abdeckung Opal oder Mikroprisma. Endkappen und Montagezubehör separat bestellen.

Winkelformteile werden durch die anschließende Leuchte gespeist.

Option Wandmontage: www.monos.de/D25.011REV00

Option Stromschiene: www.monos.de/D25.012REV00

Datenblatt

Ausstattungsvarianten:

Lichtfarben:	3000K, 4000K, 6500K
Treiber	ON/OFF, DALI
Farbwiedergabe	CRI>80, CRI>90
Notlichtakku:	.la

Datenblatt: www.monos.de/D25.008REV00

tabit - Lichtkanal Anbau- oder Pendelleuchte

Artikelnummer	Treiber	W	LM	ССТ	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.5641	DALI	20,0	1.928	4000	23	80	OPAL	920	45	50	1,50
005.0001.5642	DALI	22,0	2.142	4000	23	80	OPAL	1020	45	50	1,63
005.0001.5643	DALI	24,0	2.356	4000	23	80	OPAL	1120	45	50	1,76
005.0001.5644	DALI	26,0	2.570	4000	23	80	OPAL	1220	45	50	1,89
005.0001.5645	DALI	28,0	2.785	4000	23	80	OPAL	1320	45	50	2,02
005.0001.5646	DALI	31,0	2.999	4000	23	80	OPAL	1420	45	50	2,15
005.0001.5647	DALI	33,0	3.213	4000	23	80	OPAL	1520	45	50	2,28
005.0001.5648	DALI	35,0	3.427	4000	23	80	OPAL	1620	45	50	2,41
005.0001.5649	DALI	37,0	3.641	4000	23	80	OPAL	1720	45	50	2,54
005.0001.5650	DALI	39,0	3.856	4000	23	80	OPAL	1820	45	50	2,67
005.0001.5651	DALI	42,0	4.070	4000	23	80	OPAL	1920	45	50	2,80
005.0001.5652	DALI	44,0	4.284	4000	23	80	OPAL	2020	45	50	2,93
005.0001.5653	DALI	46,0	4.498	4000	23	80	OPAL	2120	45	50	3,06
005.0001.5654	DALI	48,0	4.712	4000	23	80	OPAL	2220	45	50	3,19
005.0001.5655	DALI	50,0	4.927	4000	23	80	OPAL	2320	45	50	3,32
005.0001.5656	DALI	52,0	5.141	4000	23	80	OPAL	2420	45	50	3,45
005.0001.5657	DALI	54,0	5.355	4000	23	80	OPAL	2520	45	50	3,58
005.0001.5658	DALI	57,0	5.569	4000	23	80	OPAL	2620	45	50	3,71
005.0001.5659	DALI	59,0	5.783	4000	23	80	OPAL	2720	45	50	3,84
005.0001.5660	DALI	61,0	5.998	4000	23	80	OPAL	2820	45	50	3,97
005.0001.5661	DALI	63,0	6.212	4000	23	80	OPAL	2920	45	50	4,10
005.0001.5662	DALI	65,0	6.426	4000	23	80	OPAL	3020	45	50	4,23

Artikelnummer	Treiber	W	LM	ССТ	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.5729	DALI	20,0	2.731	4000	19	80	Mikroprisma	920	45	50	1,50
005.0001.5730	DALI	22,0	3.035	4000	19	80	Mikroprisma	1020	45	50	1,63
005.0001.5731	DALI	24,0	3.338	4000	19	80	Mikroprisma	1120	45	50	1,76
005.0001.5732	DALI	26,0	3.641	4000	19	80	Mikroprisma	1220	45	50	1,89
005.0001.5733	DALI	28,0	3.945	4000	19	80	Mikroprisma	1320	45	50	2,02
005.0001.5734	DALI	31,0	4.248	4000	19	80	Mikroprisma	1420	45	50	2,15
005.0001.5735	DALI	33,0	4.552	4000	19	80	Mikroprisma	1520	45	50	2,28
005.0001.5736	DALI	35,0	4.855	4000	19	80	Mikroprisma	1620	45	50	2,41
005.0001.5737	DALI	37,0	5.159	4000	19	80	Mikroprisma	1720	45	50	2,54
005.0001.5738	DALI	39,0	5.462	4000	19	80	Mikroprisma	1820	45	50	2,67
005.0001.5739	DALI	42,0	5.766	4000	19	80	Mikroprisma	1920	45	50	2,80
005.0001.5740	DALI	44,0	6.069	4000	19	80	Mikroprisma	2020	45	50	2,93
005.0001.5741	DALI	46,0	6.372	4000	19	80	Mikroprisma	2120	45	50	3,06
005.0001.5742	DALI	48,0	6.676	4000	19	80	Mikroprisma	2220	45	50	3,19
005.0001.5743	DALI	50,0	6.979	4000	19	80	Mikroprisma	2320	45	50	3,32
005.0001.5744	DALI	52,0	7.283	4000	19	80	Mikroprisma	2420	45	50	3,45
005.0001.5745	DALI	54,0	7.586	4000	19	80	Mikroprisma	2520	45	50	3,58
005.0001.5746	DALI	57,0	7.890	4000	19	80	Mikroprisma	2620	45	50	3,71
005.0001.5747	DALI	59,0	8.193	4000	19	80	Mikroprisma	2720	45	50	3,84
005.0001.5748	DALI	61,0	8.497	4000	19	80	Mikroprisma	2820	45	50	3,97
005.0001.5749	DALI	63,0	8.800	4000	19	80	Mikroprisma	2920	45	50	4,10
005.0001.5750	DALI	65,0	9.104	4000	19	80	Mikroprisma	3020	45	50	4,23

tabit - Lichtkanal Anbau- oder Pendelleuchte

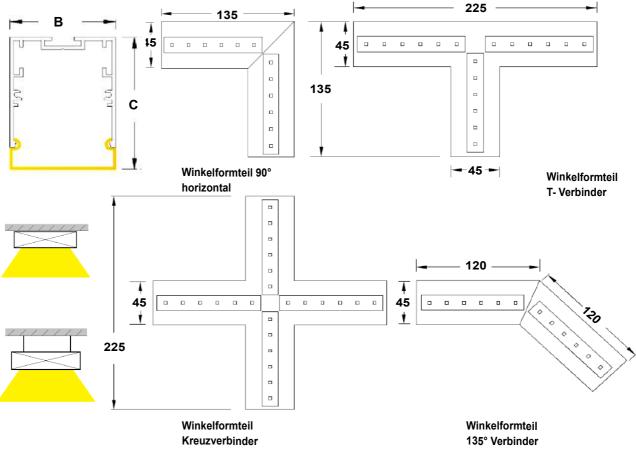
Winkelformteile

Artikelnummer	Verbinder	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С
0001.1069	90°	4,0	403	3000K	80	OPAL	23	147x147	45	50
0001.0986	135°	4,0	403	3000K	80	OPAL	23	125x125	45	50
0001.0987	Т	7,0	605	3000K	80	OPAL	23	225x147	45	50
0001.0988	X	9,0	806	3000K	80	OPAL	23	225x225	45	50
Artikelnummer	Verbinder	w	LM	ССТ	CRI>	Optik	UGR <	Α	В	C
				•••	•	Optik	OCIV 1	, ,	_	•
0001.0989	90°	4,0	428	4000K	80	OPAL	23	147x147		_
0001.0989 0001.0990	90° 135°					•	00		45	50
		4,0	428	4000K	80	OPAL	23	147x147	45 45	50 50

Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С
0001.0993	90°	4,0	571	3000K	80	Mikroprisma	19	147x147	45	50
0001.0994	135°	4,0	571	3000K	80	Mikroprisma	19	125x125	45	50
0001.0995	Т	7,0	857	3000K	80	Mikroprisma	19	225x147	45	50
0001.0996	X	9,0	1.142	3000K	80	Mikroprisma	19	225x225	45	50
						·				
Artikelnummer	Verbinder	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С
0001.0997	90°	4,0	607	4000K	80	Mikroprisma	19	147x147	45	50

Artikelnummer	Verbinder	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	
0001.0997	90°	4,0	607	4000K	80	Mikroprisma	19	147x147	45	50	
0001.0998	135°	4,0	607	4000K	80	Mikroprisma	19	125x125	45	50	
0001.0999	Т	7,0	910	4000K	80	Mikroprisma	19	225x147	45	50	
0001.1000	Х	•				Mikroprisma					
		-,-									

Artikelnummer	Bezeichnung
0001.1002	Monos Endkappe zu tabit, ohne sichtbare Schrauben
0001.0929	Monos Längsverbinder mit Abdeckung für Lichtspalte zu tabit
0001.0248	Monos Seilpendel L: 1500mm, höhenverstellbar durch Schnellverschluß
0001.0249	Monos transparente Zuleitung 3-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0250	Monos transparente Zuleitung 5-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.1047	Wandmontagebügel für tabit - 2 Bügel bis L: 1720mm, 3 Bügel L > 1720mm
0001.1049	1 Paar Lichtspaltkaschierung zu tabit, 45mm x 50mm, Clips in Profilfarbe zur Ab-
	deckung von Lichtspalten am Leuchtenstoß, werkzeuglose Anbringung von außen.



tabit B - Lichtkanal Anbau- oder Pendelleuchte

MONOS **tabit B** LED Lichtkanal als Anbau- oder Pendelleuchte, CRI>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Lebensdauer 50.000h-L80/B10, LED auswechselbar, Leuchtengehäuse aus stranggepresstem Aluminium, pulverbeschichtet in RAL 9016 Weiss (andere RAL Farben auf Anfrage), opale Wanne 3-seitig abstrahlend, Endkappen und Montagezubehör separat bestellen.

Winkelformteile werden durch die anschließende Leuchte gespeist.

Datenblatt

Ausstattungsvarianten:

Option Wandmontage: www.monos.de/D25.011REV00

Option Stromschiene: www.monos.de/D25.012REV00

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90

Notlichtakku: Ja

Datenblatt: www.monos.de/D25.006REV00

tabit B - Lichtkanal Anbau- oder Pendelleuchte

Standard

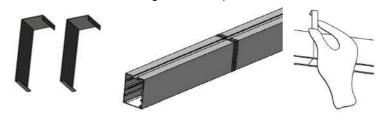
Artikelnummer	Treiber	W	LM	ССТ	UGR <	CRI>	Ontik	Α	В	С	Kg
005.0001.5268	DALI	20,0	1.928	4000	23	80	OPAL	920	45		1,50
005.0001.5270	DALI	22,0	2.142	4000	23	80	OPAL				1,63
005.0001.5272	DALI	24,0	2.356	4000	23	80	OPAL				1,76
005.0001.5274	DALI	26,0	2.570	4000	23	80	OPAL				1,89
005.0001.5276	DALI	28,0	2.785	4000	23	80	OPAL				2,02
005.0001.5278	DALI	30,0	2.999	4000	23	80	OPAL				2,15
005.0001.5280	DALI	32,0	3.213	4000	23	80	OPAL				2,28
005.0001.5282	DALI	35,0	3.427	4000	23	80	OPAL				2,41
005.0001.5284	DALI	37,0	3.641	4000	23	80	OPAL				2,54
005.0001.5286	DALI	39,0	3.856	4000	23	80	OPAL				2,67
005.0001.5288	DALI	41,0	4.070	4000	23	80	OPAL				2,80
005.0001.5290	DALI	43,0	4.284	4000	23	80	OPAL				2,93
005.0001.5292	DALI	45,0	4.498	4000	23	80	OPAL				3,06
005.0001.5294	DALI	48,0	4.712	4000	23	80	OPAL				3,19
005.0001.5296	DALI	50,0	4.927	4000	23	80	OPAL				3,32
005.0001.5298	DALI	52,0	5.141	4000	23	80	OPAL	2420	45	60	3,45
005.0001.5300	DALI	54,0	5.355	4000	23	80	OPAL				3,58
005.0001.5302	DALI	56,0	5.569	4000	23	80	OPAL	2620	45	60	3,71
005.0001.5304	DALI	58,0	5.783	4000	23	80	OPAL	2720	45	60	3,84
005.0001.5306	DALI	61,0	5.998	4000	23	80	OPAL	2820	45	60	3,97
005.0001.5308	DALI	63,0	6.212	4000	23	80	OPAL	2920	45	60	4,10
005.0001.5310	DALI	65,0	6.426	4000	23	80	OPAL	3020	45	60	4,23

High Power

Artikelnummer	Treiber	W	LM	ССТ	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.5265	DALI	20,0	1.928	4000	23	80	OPAL	620	45	60	1,11
005.0001.5266	DALI	23,0	2.249	4000	23	80	OPAL	720	45	60	1,24
005.0001.5267	DALI	26,0	2.570	4000	23	80	OPAL	820	45	60	1,37
005.0001.5269	DALI	30,0	2.891	4000	23	80	OPAL	920	45	60	1,50
005.0001.5271	DALI	32,0	3.213	4000	23	80	OPAL	1020	45	60	1,63
005.0001.5273	DALI	36,0	3.534	4000	23	80	OPAL	1120	45	60	1,76
005.0001.5275	DALI	39,0	3.855	4000	23	80	OPAL	1220	45	60	1,89
005.0001.5277	DALI	42,0	4.176	4000	23	80	OPAL	1320	45	60	2,02
005.0001.5279	DALI	45,0	4.498	4000	23	80	OPAL	1420	45	60	2,15
005.0001.5281	DALI	49,0	4.819	4000	23	80	OPAL	1520	45	60	2,28
005.0001.5283	DALI	52,0	5.140	4000	23	80	OPAL	1620	45	60	2,41
005.0001.5285	DALI	55,0	5.461	4000	23	80	OPAL	1720	45	60	2,54
005.0001.5287	DALI	58,0	5.783	4000	23	80	OPAL	1820	45	60	2,67
005.0001.5289	DALI	62,0	6.104	4000	23	80	OPAL	1920	45	60	2,80
005.0001.5291	DALI	65,0	6.425	4000	23	80	OPAL	2020	45	60	2,93
005.0001.5293	DALI	68,0	6.746	4000	23	80	OPAL	2120	45	60	3,06
005.0001.5295	DALI	71,0	7.068	4000	23	80	OPAL	2220	45	60	3,19

tabit B - Lichtkanal Anbau- oder Pendelleuchte

High Power

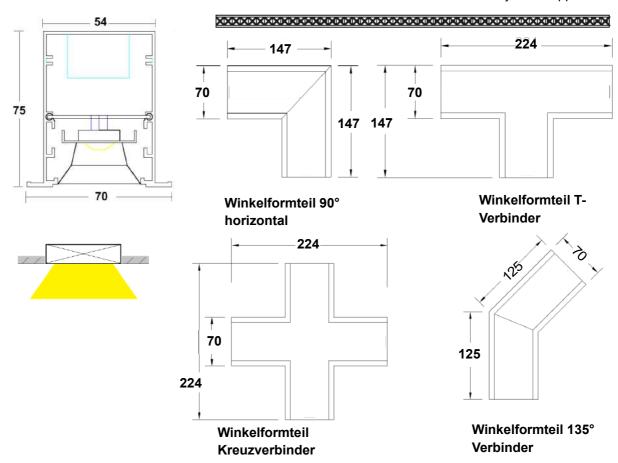

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.5297	DALI	75,0	7.389	4000	23	80	OPAL	2320	45	60	3,32
005.0001.5299	DALI	78,0	7.710	4000	23	80	OPAL	2420	45	60	3,45
005.0001.5301	DALI	81,0	8.031	4000	23	80	OPAL	2520	45	60	3,58
005.0001.5303	DALI	84,0	8.353	4000	23	80	OPAL	2620	45	60	3,71
005.0001.5305	DALI	88,0	8.674	4000	23	80	OPAL	2720	45	60	3,84
005.0001.5307	DALI	91,0	8.995	4000	23	80	OPAL	2820	45	60	3,97
005.0001.5309	DALI	94,0	9.316	4000	23	80	OPAL	2920	45	60	4,10
005.0001.5311	DALI	97,0	9.638	4000	23	80	OPAL	3020	45	60	4,23

Winkelformteile

Artikelnummer	Verbinder	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
0001.0921	90°	4,0	428	4000K	23	80	OPAL	135x135	45	60	0,45
0001.0923	135°	4,0	428	4000K	23	80	OPAL	120x120	45	60	0,45
0001.0925	Т	7,0	643	4000K	23	80	OPAL	225x135	45	60	0,75
0001.0927	Χ	9,0	857	4000K	23	80	OPAL	225x225	45	60	0,90

Artikelnummer	Verbinder	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
0001.0922	90°	7,0	643	4000K	23	80	OPAL	135x135	45	60	0,45
0001.0924	135°	7,0	643	4000K	23	80	OPAL	120x120	45	60	0,45
0001.0926	Т	10,0	964	4000K	23	80	OPAL	225x135	45	60	0,75
0001.0928	Χ	13,0	1.285	4000K	23	80	OPAL	225x225	45	60	0,90

Artikelnummer	Bezeichnung
0001.0812	Monos tabit B Endkappe in Profilfarbe ohne sichtbare Schrauben
0001.0929	Monos tabit B 1 Paar Längsverbinder
0001.0248	Monos Seilpendel L: 1500mm, höhenverstellbar durch Schnellverschluß
0001.0249	Monos transparente Zuleitung 3-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0250	Monos transparente Zuleitung 5-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0930	Monos tabit B Leerprofil mit Abdeckung in Profilfarbe je lfd. Meter
0001.1047	Wandmontagebügel für tabit B - 2 Bügel bis L: 1720mm, 3 Bügel L > 1720mm
0001.1049	1 Paar Lichtspaltkaschierung zu tabit B, 45mm x 50mm, Clips in Profilfarbe zur Ab-
	deckung von Lichtspalten am Leuchtenstoß, werkzeuglose Anbringung von außen.



polaris E - Lichtkanal als Einbauleuchte - direkt

monos LED Lichtkanal polaris E als Einbauleuchte, Lichtverteilung rein direkt strahlend, EVG, 15W, 1958lm, mit durchgehender Reflektoroptik, CRI>80, Treiber in der Leuchte, LED auswechselbar, Lichtfarbtoleranz MacAdam 3 (3 SDCM), L80/B10 bei 50.000h, Lichtlenkung über hocheffiziente schwarze Einzelreflektortechnik, UGR<16, Leuchtenkörper aus strangepresstem Aluminium pulberbeschichtet in Farbe RAL9016 Weiss, (andere RAL Farben auf Anfrage), Endkappen und Pendelsatz separat bestellen. Ausschnittmaß B: 60mm x L: + 3mm je Endkappe

Winkelformteile mit Blindabdeckung

Datenblatt

att

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Notificitation. Ja

Datenblatt: www.monos.de/D25.010REV00

polaris E – Lichtkanal als Einbauleuchte - direkt

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg
005.0001.5933	DALI	15,0	2.030	4000	19	80	80° black	560	70	75	1,54
005.0001.5934	DALI	22,0	3.045	4000	19	80	80° black	840	70	75	2,21
005.0001.5935	DALI	29,0	4.060	4000	19	80	80° black	1120	70	75	2,88
005.0001.5936	DALI	36,0	5.075	4000	19	80	80° black	1400	70	75	3,55
005.0001.5937	DALI	44,0	6.090	4000	19	80	80° black	1680	70	75	4,22
005.0001.5938	DALI	51,0	7.105	4000	19	80	80° black	1960	70	75	4,89
005.0001.5939	DALI	58,0	8.120	4000	19	80	80° black	2240	70	75	5,56
005.0001.5940	DALI	65,0	9.135	4000	19	80	80° black	2520	70	75	6,23
005.0001.5941	DALI	73,0	10.150	4000	19	80	80° black	2800	70	75	6,90

Artikelnummer	Verbinder	В	С	Bezeichnung
0001.1042	90°	55	75	monos Winkelformteil 90° polaris E, 147mm x 147mm
0001.1043	135°	55	75	monos Winkelformteil 135° polaris E, 125mm x 125mm
0001.1044	T	55	75	Monos T-Verbinder polaris E, 225mm x 147mm
0001.1045	Χ	55	75	Monos Kreuzverbinder polaris E, 225mm x 225mm
0001.0881		55	75	Monos Leerprofil mit Abdeckung je Meter felis E + polaris E
0001.0879				Monos Endkappe felis E + polaris E
0001.0880				Monos 1 Paar Längsverbinder felis E + polaris E

polaris A - Lichtkanal Anbau oder Pendelleuchte - direkt

monos LED Anbau- oder Pendelleuchte polaris A, Lichtverteiling rein direkt, CRI>80, mit durchgehender Reflektoroptik, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Lebensdauer L80/B10 — 50.000h. Lichtlenkung über hocheffiziente schwarze Einzelreflektortechnik, UGR<16, Leuchtenkörper aus stranggepresstem Aluminium, pulverbeschichtet in Farbe RAL 9016 Weiss (andere RAL Farben auf Anfrage), Endkappen, Seilpendel u.a. Montagezubehör separat bestellen..

Winkelformteil 90° Winkelformteil T-Verbinder

Option Wandmontage: www.monos.de/D25.011REV00

Winkelformteile mit Blindabdeckung

Datenblatt

Winkelformteil

Kreuzverbinder

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K

Treiber ON/OFF, DALI

Farbwiedergabe CRI>80, CRI>90

Winkelformteil 135°

Verbinder

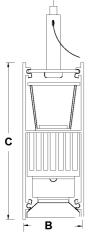
Notlichtakku: Ja

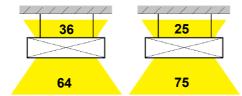
Datenblatt: www.monos.de/D25.009REV00

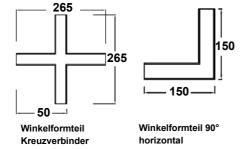
polaris A - Lichtkanal Anbau oder Pendelleuchte - direkt

Artikelnummer	Treiber	W	LM	CCT	UGR <	CRI>	Optik	Α	В	С	Kg	
005.0001.5897	DALI	15,0	2.030	4000	19	80	80° black	560	55	75	1,54	
005.0001.5898	DALI	22,0	3.045	4000	19	80	80° black	840	55	75	2,21	
005.0001.5899	DALI	29,0	4.060	4000	19	80	80° black	1120	55	75	2,88	
005.0001.5900	DALI	36,0	5.075	4000	19	80	80° black	1400	55	75	3,55	
005.0001.5901	DALI	44,0	6.090	4000	19	80	80° black	1680	55	75	4,22	
005.0001.5902	DALI	51,0	7.105	4000	19	80	80° black	1960	55	75	4,89	
005.0001.5903	DALI	58,0	8.120	4000	19	80	80° black	2240	55	75	5,56	
005.0001.5904	DALI	65,0	9.135	4000	19	80	80° black	2520	55	75	6,23	
005.0001.6021	DALI	73.0	10.150	4000	19	80	80° black	2800	55	75	6.90	

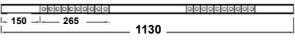
Artikelnummer	Verbinder	В	С	Bezeichnung
0001.1038	90°	55	75	Monos Winkelformteil 90° polaris A, 140mm x 140mm
0001.1039	135°	55	75	Monos Winkelformteil 135° polaris A, 120mm x 120mm
0001.1040	T	55	75	Monos T-Verbinder polaris A, 225mm x 140mm
0001.1041	Χ	55	75	Monos Kreuzverbinder polaris A, 225mm x 225mm
0001.0846		55	75	Monos Leerprofil mit Abdeckung je Meter felis A + polaris A
0001.0756				Monos Endkappe felis A + polaris A
0001.0845				Monos 1 Paar Längsverbinder felis A + polaris A
0001.1047	Wandmonta	igeb	üge	el für polaris A - 2 Bügel bis L: 1720mm, 3 Bügel L > 1720mm
0001.1048	1 Paar Licht	spa	ltka	schierung zu polaris A, 55mm x 75mm, Clips in Profilfarbe zur Ab-
	deckung vo	n Li	chts	spalten am Leuchtenstoß, werkzeuglose Anbringung von außen.

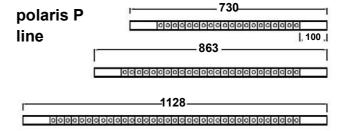


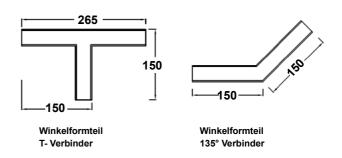




polaris P - Pendelleuchte mit Reflektoroptik







Monos LED Pendelleuchte **polaris P**, filigraner Leuchtenkörper aus stranggepresstem Aluminium, pulverbeschichtet in RAL 9016 Weiss (andere RAL Farben auf Anfrage), Lichtlenkung über hocheffiziente Reflektortechnik wahlweise in Farbe Schwarz UGR<16 oder in Farbe Weiss UGR<19, **polaris P segment** mit einzelnen Reflektorsegmenten (ein Lichteinsatz L: 265mm je 565mm Profil) und Lichtverteilung 64% direkt / 34% indirekt oder **polaris P line** mit durchgehender Reflektoroptik und Lichtverteilung 75% direkt und 25% indirekt. Farbwiedergabe CRI>80, Lichtfarbtoleranz MacAdam 3 (3 SDCM), Lebensdauer 50.000h – L80/B10. Endkappen, Seilpendel u.a. Montagezubehör separat bestellen.

polaris P segment 150 150 565 565

Option Wandmontage: www.monos.de/D25.011REV00

Winkelformteile mit Blindabdeckung

Ausstattungsvarianten:

Lichtfarben: 3000K, 4000K, 6500K
Treiber ON/OFF, DALI
Farbwiedergabe CRI>80, CRI>90
Notlichtakku: Ja

Datenblatt: <u>www.monos.de/D25.005REV00</u>

polaris P segment - mit geteilter Reflektoroptik

64% direkt / 36% indirekt - Reflektor schwarz

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.1796	DALI	17,0	2.174	4000	80	48° black	16	565	35	90	1,50
005.0001.1798	DALI	34,0	4.345	4000	80	48° black	16	1130	35	90	2,50
005.0001.1800	DALI	51,0	6.522	4000	80	48° black	16	1695	35	90	3,50
005.0001.1802	DALI	68,0	8.696	4000	80	48° black	16	2260	35	90	4,50

64% direkt / 36% indirekt - Reflektor weiß

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.5423	DALI	17,0	2.174	4000	80	48° white	19	565	35	90	1,50
005.0001.5425	DALI	34,0	4.345	4000	80	48° white	19	1130	35	90	2,50
005.0001.5427	DALI	51,0	6.522	4000	80	48° white	19	1695	35	90	3,50
005.0001.5429	DALI	68,0	8.696	4000	80	48° white	19	2260	35	90	4,50

75% direkt / 25% indirekt - Reflektor schwarz

Artikelnummer	Treiber	W	LM	ССТ	CRI>	Optik	UGR <	Α	В	С	Kg	
005.0001.5504	DALI	20,0	2.815	4000	80	48° black	16	565	35	90	1,50	
005.0001.1799	DALI	40,0	5.630	4000	80	48° black	16	1130	35	90	2,50	
005.0001.5505	DALI	60,0	8.445	4000	80	48° black	16	1695	35	90	4,00	
005.0001.1803	DALI	80,0	11.260	4000	80	48° black	16	2260	35	90	4,00	

75% direkt / 25% indirekt - Reflektor weiß

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg	
005.0001.5424	DALI	20,0	2.815	4000	80	48° white	19	565	35	90	1,50	
005.0001.5426	DALI	40,0	5.630	4000	80	48° white	19	1130	35	90	2,50	
005.0001.5428	DALI	60,0	8.445	4000	80	48° white	19	1695	35	90	4,00	
005.0001.5430	DALI	80,0	11.260	4000	80	48° white	19	2260	35	90	5,00	
	이이이이이			000	0000	000		0 0	00	000		

polaris P line - mit durchgehender Reflektoroptik

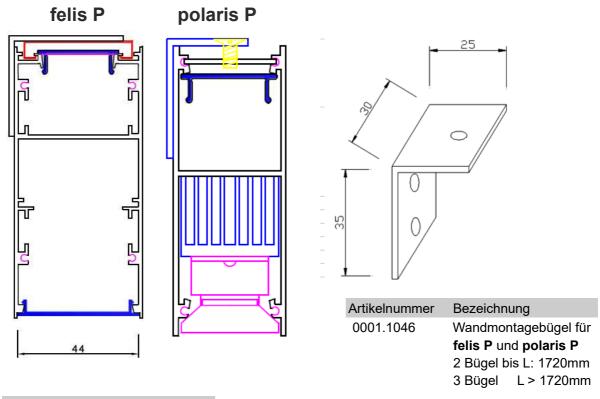
75% direkt / 25% indirekt - Reflektor schwarz

Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.5446	DALI	30,0	3.801	4000	80	48° black	16	730	35	90	1,71
005.0001.5447	DALI	37,0	4.703	4000	80	48° black	16	863	35	90	2,03
005.0001.5448	DALI	51,0	6.506	4000	80	48° black	16	1128	35	90	2,66
005.0001.5449	DALI	78,0	10.112	4000	80	48° black	16	1658	35	90	3,92
005 0001 5450	DALI	85.0	11 013	4000	80	48° black	16	1790	35	90	4 24

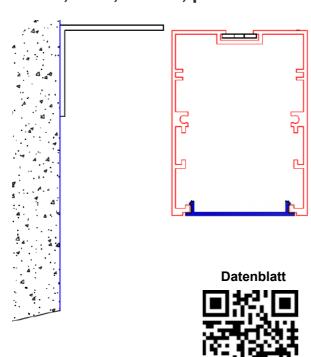
75% direkt / 25% indirekt - Reflektor weiß

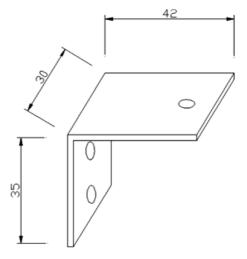
Artikelnummer	Treiber	W	LM	CCT	CRI>	Optik	UGR <	Α	В	С	Kg
005.0001.5466	DALI	30,0	3.801	4000	80	48° white	19	730	35	90	1,71
005.0001.5467	DALI	37,0	4.703	4000	80	48° white	19	863	35	90	2,03
005.0001.5468	DALI	51,0	6.506	4000	80	48° white	19	1128	35	90	2,66
005.0001.5469	DALI	78,0	10.112	4000	80	48° white	19	1658	35	90	3,92
005.0001.5470	DALI	85,0	11.013	4000	80	48° white	19	1790	35	90	4,24

Artikelnummer	Bezeichnung
0001.0933	Monos polaris P Alu Winkelformteil 90° horizontal, Maße: 150x150xH: 90mm.
0001.0934	Monos polaris P Alu Winkelformteil 135° horizontal, Maße: 150x150 H: 90mm.
0001.0935	Monos polaris P Alu Winkelformteil als T-Verbinder, Maße: 265x150x H: 90mm.
0001.0936	Monos polaris P Alu Winkelformteil als Kreuzverbinder, Maße: 265x265xH: 90mm.
0001.0937	Monos polaris P Endkappe ohne sichtbare Schrauben
0001.0938	Monos polaris P Alu Leerprofil mit Abdeckung je laufender Meter B:35 xH: 90mm.
0001.0939	Monos polaris P Längsverbinder
0001.0942	Monos Seilpendel L: 1500mm, höhenverstellbar durch Schnellverschluß
0001.0249	Monos transparente Zuleitung 3-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.0250	Monos transparente Zuleitung 5-pol. L: 1500mm mit Deckenbaldachin in Profilfarbe
0001.1046	Wandmontagebügel für polaris P - 2 Bügel bis L: 1720mm, 3 Bügel L > 1720mm
0001.1050	1 Paar Lichtspaltkaschierung zu polaris P 35mm x 90mm, Clips in Profilfarbe zur Ab-
	deckung von Lichtspalten am Leuchtenstoß, werkzeuglose Anbringung von außen.



Wandmontage Lichtkanäle




Lichtverteilung direkt / indirekt

Lichtverteilung direkt

felis A, tabit, tabit B, polaris A

Artikelnummer	Bezeichnung
0001.1047	Wandmontagebügel für
	felis A und tabit, tabit B
	polaris A
	2 Bügel bis L: 1720mm
	3 Bügel L > 1720mm

Datenblatt: www.monos.de/D25.011REV00

Ausstattungsvarianten für Lichtkanalleuchten

Ausstattung von ON/OFF geschalteten Lichtkanalleuchten mit Universal- Adaptern zur werkzeuglosen Montage an einer 3-Phasen-Stromschiene.

Zusammen mit 2 Endkappen in Profilfarbe montiert an der Leuchte.

Abbildung ähnlich

Artikelnummer	Beschreibung	В	С
0001.1003 felis A –	Ausstattung mit 3-Phasen Universaladapter und 2 Endkappen	55	75
0001.1004 tabit B -	Ausstattung mit 3-Phasen Universaladapter und 2 Endkappen	45	60
0001.1005 tabit -	Ausstattung mit 3-Phasen Universaladapter und 2 Endkappen	45	55

felis A tabit B tabit

Datenblatt: www.monos.de/D25.012REV00

